@article{UZKU_2017_159_2_a7,
author = {Tran Le Thai and D. V. Tarlakovskii},
title = {Nonstationary axisymmetric motion of an elastic momentum semi-space under non-stationary normal surface movements},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {231--245},
year = {2017},
volume = {159},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2017_159_2_a7/}
}
TY - JOUR AU - Tran Le Thai AU - D. V. Tarlakovskii TI - Nonstationary axisymmetric motion of an elastic momentum semi-space under non-stationary normal surface movements JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2017 SP - 231 EP - 245 VL - 159 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZKU_2017_159_2_a7/ LA - ru ID - UZKU_2017_159_2_a7 ER -
%0 Journal Article %A Tran Le Thai %A D. V. Tarlakovskii %T Nonstationary axisymmetric motion of an elastic momentum semi-space under non-stationary normal surface movements %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2017 %P 231-245 %V 159 %N 2 %U http://geodesic.mathdoc.fr/item/UZKU_2017_159_2_a7/ %G ru %F UZKU_2017_159_2_a7
Tran Le Thai; D. V. Tarlakovskii. Nonstationary axisymmetric motion of an elastic momentum semi-space under non-stationary normal surface movements. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 159 (2017) no. 2, pp. 231-245. http://geodesic.mathdoc.fr/item/UZKU_2017_159_2_a7/
[1] Badriev I. B., Banderov V. V., Makarov M. V., “Mathematical simulation of the problem of the pre-critical sandwich plate bending in geometrically nonlinear one dimensional formulation”, IOP Conf. Ser.: Mater. Sci. Eng., 208:1 (2017), Art. 012002, 7 pp. | DOI
[2] Badriev I. B., Makarov M. V., Paimushin V. N., “Contact statement of mechanical problems of reinforced on a contour sandwich plates with transversally-soft core”, Russ. Math., 61:1 (2017), 69–75 | DOI
[3] Badriev I. B., Makarov M. V., Paimushin V. N., “Numerical investigation of a physically nonlinear problem of longitudinal bending of sandwich plate with transversal-soft core”, PNRPU Mech. Bull., 2017, no. 1, 39–51 (In Russian)
[4] Badriev I. B., Makarov M. V., Paimushin V. N., “Longitudinal and transverse bending by a cylindrical shape of the sandwich plate stiffened in the end sections by rigid bodies”, IOP Conf. Ser.: Mater. Sci. Eng., 158:1 (2016), Art. 012011, 9 pp. | DOI
[5] Badriev I. B., Makarov M. V., Paimushin V. N., “Numerical investigation of physically nonlinear problem of sandwich plate bending”, Proc. Eng., 150 (2016), 1050–1055 | DOI
[6] Badriev I. B., Makarov M. V., Paimushin V. N., “Mathematical simulation of nonlinear problem of three-point composite sample bending test”, Proc. Eng., 150 (2016), 1056–1062 | DOI
[7] Badriev I. B., Garipova G. Z., Makarov M. V., Paymushin V. N., “Numerical solution of the issue about geometrically nonlinear behavior of sandwich plate with transversal soft filler ”, Res. J. Appl. Sci., 10:8 (2015), 428–435 | DOI
[8] Cosserat E., Cosserat F., Theorie des corps deformables, Librairie Scientifique A. Hermann et Fils, Paris, 1909, 226 pp. (In French)
[9] Aero E. L., Kuvshinskiy E. V., “Basic equations of the theory of elasticity of media with rotational interaction of particles”, Fiz. Tverd. Tela, 2:7 (1960), 1399–1409 (In Russian) | MR
[10] Novatsky V., Theory of Elasticity, Mir, Moscow, 1975, 872 pp. (In Russian) | MR
[11] Birsan M., “Several results in the dynamic theory of thermoelastic Cosserat shells with voids”, Mech. Res. Commun., 33:2 (2006), 157–176 | DOI | MR | Zbl
[12] Birsan M., “Thermal stresses in cylindrical Cosserat elastic shells”, Eur. J. Mech. A: Solids, 28:1 (2009), 94–101 | DOI | MR | Zbl
[13] Kumar R., Gupta R. R., “Propagation of waves in transversely isotropic micropolar generalized thermoelastic half space”, Int. Commun. Heat Mass Transfer., 37:10 (2010), 1452–1458 | DOI | MR
[14] Nistor I., “Generalized theory of Cosserat thermoelastic media”, Bull. Inst. Polytech. Jassy, 37:1 (1991), 89–96 | MR | Zbl
[15] Kulesh M. A., Matveenko V. P., Shardakov I. N., “On the properties of surface waves in the elastic Cosserat medium”, Mat. Model. Sist. Protsessov, 14, PGTU, Perm, 2006, 109–113 (In Russian)
[16] Suvorov E. M., Tarlakovskii D. V., Fedotenkov G. V., “The plane problem of the impact of a rigid body on a half-space modelled by a Cosserat medium”, J. Appl. Math. Mech., 76:5 (2012), 511–518 | DOI | MR | Zbl
[17] Lai Thanh Tuan, Tarlakovsky D. V., “Propagation of non-stationary kinematic perturbations from a spherical cavity in the Cosserat pseudocontinuum”, Mekh. Kompoz. Mater. Konstr., 17:2 (2011), 184–195 (In Russian)
[18] Lai Thanh Tuan, Tarlakovsky D. V., “Propagation of nonstationary axisymmetric perturbations from the surface of a sphere filled with a Cousser pseudoelastic medium”, Tr. Mosk. Aviats. Inst., 2012, no. 53 Available at: (In Russian) http://trudymai.ru/published.php?ID=29267
[19] Lai Thanh Tuan, Tarlakovsky D. V., “Diffraction of waves by a spherical cavity in the Cosserat pseudo-continuum”, Radioelectron. Nanosist. Inf. Tekhnol., 5:1 (2013), 119–125 (In Russian)
[20] Van Der Pol B., Bremmer H., Operational Calculus based on the Two-Sided Laplace Transform, Cambridge Univ. Press, 1950, 415 pp. | MR
[21] Gorshkov A. G., Medvedskii A. L., Rabinskii L. N., Tarlakovskii D. V., Waves in Continuous Media, FIZMATLIT, Moscow, 2004, 472 pp.
[22] Dech G., Guide to the Practical Use of the Laplace Transform and Z-Transform, Nauka, Moscow, 1971, 288 pp. (In Russian) | MR
[23] Sagomonyan A. Ya., Stress Waves in Continuous Media, Izd. Mosk. Gos. Univ., Moscow, 1985, 416 pp. (In Russian)
[24] Slepyan L. I., Yakovlev Yu. S., Integral Transformations in Unsteady Problems of Mechanics, Sudostroyeniye, Leningrad, 1980, 344 pp. (In Russian) | MR
[25] Sneddon I., Fourier Transforms, Courier Corp., 1995, 542 pp. | MR
[26] Erofeev V. I., Wave Processes in Solids with Microstructure, Izd. Mosk. Gos. Univ., Moscow, 1999, 328 pp. (In Russian)