Mots-clés : transverse rib, laminar-turbulent transition
@article{UZKU_2017_159_2_a6,
author = {D. I. Okhotnikov},
title = {Direct numerical simulation of laminar-turbulent transition on grids with local refinement},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {216--230},
year = {2017},
volume = {159},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2017_159_2_a6/}
}
TY - JOUR AU - D. I. Okhotnikov TI - Direct numerical simulation of laminar-turbulent transition on grids with local refinement JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2017 SP - 216 EP - 230 VL - 159 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZKU_2017_159_2_a6/ LA - ru ID - UZKU_2017_159_2_a6 ER -
%0 Journal Article %A D. I. Okhotnikov %T Direct numerical simulation of laminar-turbulent transition on grids with local refinement %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2017 %P 216-230 %V 159 %N 2 %U http://geodesic.mathdoc.fr/item/UZKU_2017_159_2_a6/ %G ru %F UZKU_2017_159_2_a6
D. I. Okhotnikov. Direct numerical simulation of laminar-turbulent transition on grids with local refinement. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 159 (2017) no. 2, pp. 216-230. http://geodesic.mathdoc.fr/item/UZKU_2017_159_2_a6/
[1] Molochnikov V. M., Mazo A. B., Malyukov A. V., Kalinin E. I., Mikheev N. I., Dushina O. A., Paereliy A. A., “Distinctive features of vortical structures generation in separated channel flow behind a rib under transition to turbulence”, Thermophys. Aeromech., 21:3 (2014), 309–317 | DOI
[2] Dushina O. A., Molochnikov V. M., Mikheev N. I., Paerely A. A., “Evolution of kinematic structure of the flow behind a transverse rib for transitional flow regimes”, Thermophys. Aeromech., 19:2 (2012), 259–266 | DOI
[3] Mazo A. B., Okhotnikov D. I., “Local transition to turbulence behind an obstacle for a nominally laminar flow”, Lobachevskii J. Math., 37:3 (2015), 360–367 | DOI | MR
[4] Mazo A. B., Simulation of Turbulent Flows of Incompressible Fluid, Kazan. Gos. Univ., Kazan, 2007, 106 pp. (In Russian)
[5] Garbaruk A. V., Strelez M. H., Travin A. K., Shur M. L., Modern Approaches to Turbulence Modeling, Polytekh. Univ., St. Petersburg, 2016, 234 pp. (In Russian)
[6] Kalinin E. I., Mazo A. B., Isaev S. A., “Composite mesh generator for CFD problems”, IOP Conf. Ser.: Mater. Sci. Eng., 158:1 (2016), Art. 012047, 6 pp. | DOI
[7] Schlichting H., Gersten K., Boundary-Layer Theory, Springer, Berlin–Heidelberg, 2017, 805 pp. | MR | Zbl
[8] Fletcher C., Computational techniques for fluid dynamics, v. 2, Springer-Verlag, N.Y., 1988, 409 pp. | MR | Zbl
[9] ANSYS Fluent Tutorial Guide, Ansys Inc., Southpointe, 2011, 1146 pp.
[10] Harri H., Tri Q., Antti R., “Conjugate function method for numerical conformal mappings”, J. Comput. Appl. Math., 237:1 (2013), 340–353 | DOI | MR | Zbl
[11] Brown P. R., Porter R. M., “Conformal mapping of circular quadrilaterals and weierstrass elliptic functions”, Comp. Methods Funct. Theory, 11:2 (2011), 463–486 | DOI | MR | Zbl
[12] Liseikin V. D., Grid Generation Methods, Ed. 2, Springer, 2010, xviii+390 pp. | DOI | MR | Zbl
[13] Liseikin V. D., A computational differential geometry approach to grid generation, Springer-Verlag, Berlin–Heidelberg, 2007, xiv+294 pp. | DOI | MR | Zbl
[14] Geuzaine C., Remacle J.-F., “Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities”, Int. J. Numer. Methods Eng., 79:11 (2009), 1309–1331 | DOI | MR | Zbl
[15] Remacle J.-F., Geuzaine C., Compere G., Marchandise E., “High-quality surface remeshing using harmonic maps”, Int. J. Numer. Methods Eng., 83:4 (2010), 403–425 | DOI | MR | Zbl
[16] Mikheev N. I., Dushin N. S., “A method for measuring the dynamics of velocity vector fields in a turbulent flow using smoke image-visualization videos”, Instrum. Exp. Tech., 59:6 (2016), 882–889 | DOI
[17] Zaripov D. I., Aslaev A. K., Miheev N. I., Dushin N. S., “Estimation of accuracy of new method of instantaneous flow velocity field measurement”, Tr. Academenergo, 2016, no. 1, 42–52 (In Russian)
[18] Nicolas K., Dimokratis G., Starvos K., “Three dimensional flow around a circular cylinder confined in a plane channel”, Phys. Fluids, 23:6 (2016), Art. 064106, 14 pp. | DOI
[19] HybMesh Generator, URL: https://github.com/kalininei/HybMesh
[20] Singha S., Sinhamahapatra K. P., “Flow past a circular cylinder between parallel walls at low Reynolds numbers”, Ocean Eng., 37:8–9 (2010), 757–769 | DOI