Mots-clés : isospin
@article{UZKU_2017_159_2_a4,
author = {M. I. Kirillov and A. S. Nikitin and A. S. Sitdikov},
title = {A simple algebraic model for few-nucleon systems in the presence of {non-Abelian} superselection rules},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {191--203},
year = {2017},
volume = {159},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2017_159_2_a4/}
}
TY - JOUR AU - M. I. Kirillov AU - A. S. Nikitin AU - A. S. Sitdikov TI - A simple algebraic model for few-nucleon systems in the presence of non-Abelian superselection rules JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2017 SP - 191 EP - 203 VL - 159 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZKU_2017_159_2_a4/ LA - ru ID - UZKU_2017_159_2_a4 ER -
%0 Journal Article %A M. I. Kirillov %A A. S. Nikitin %A A. S. Sitdikov %T A simple algebraic model for few-nucleon systems in the presence of non-Abelian superselection rules %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2017 %P 191-203 %V 159 %N 2 %U http://geodesic.mathdoc.fr/item/UZKU_2017_159_2_a4/ %G ru %F UZKU_2017_159_2_a4
M. I. Kirillov; A. S. Nikitin; A. S. Sitdikov. A simple algebraic model for few-nucleon systems in the presence of non-Abelian superselection rules. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 159 (2017) no. 2, pp. 191-203. http://geodesic.mathdoc.fr/item/UZKU_2017_159_2_a4/
[1] Haag R., Local Quantum Physics. Fields, Particles, Algebras, Springer-Verlag, Berlin–Heidelberg, 1996, 392 pp. | MR | Zbl
[2] Khoruzhii S. S., Introduction to Quantum Field Theory, Nauka, Moscow, 1986, 304 pp. (In Russian) | MR
[3] Doplicher S., Haag R., Roberts J. E., “Local observables and particle statistics. I”, Commun. Math. Phys., 23:3 (1971), 199–230 | DOI | MR
[4] Doplicher S., Haag R., Roberts J. E., “Local observables and particle statistics. II”, Commun. Math. Phys., 35:1 (1974), 49–85 | DOI | MR
[5] Doplicher S., Roberts J. E., “Why there is field algebra with a compact gauge group describing the superselection structure in particle physics”, Commun. Math. Phys., 131:1 (1990), 51–107 | DOI | MR | Zbl
[6] Tannaka T., “Über den Dualitätssatz der nichtkommutativen topologischen Gruppen”, Tohoku Math. J., 45 (1939), 1–12
[7] Krein M. G., “A principle of duality for a bicompact group and a square block-algebra”, Dokl. Akad. Nauk. SSSR, 69 (1949), 725–728 | MR
[8] Deligne P., “Categories tannakiennes”, The Grothendieck Festschrift, A Collect. Artic. in Honor of the 60th Birthday of A. Grothendieck, v. II, Birkhauser, Boston, 1990, 111–195 | MR | Zbl
[9] Doplicher S., Roberts J. E., “A new duality theory for compact groups”, Invent. Math., 98:1 (1989), 157–218 | DOI | MR | Zbl
[10] Doplicher S., Roberts J. E., “Endomorphisms of $C^*$-algebras, cross products and duality for compact groups”, Ann. Math., 130:1 (1989), 75–119 | DOI | MR | Zbl
[11] Mac Lane S., Categories of the Working Mathematician, Springer, New York, 1978, 317 pp. | MR
[12] Ghez P., Lima R., Roberts J. E., “$W^*$-categories”, Pac. J. Math., 120:1 (1985), 79–109 | DOI | MR | Zbl
[13] Doplicher S., Roberts J. E., “Duals of compact Lie groups realized in the Cuntz algebras and their actions on $C^*$-algebras”, J. Funct. Anal., 74:1 (1987), 96–120 | DOI | MR | Zbl
[14] Doplicher S., Roberts J. E., “Compact group actions on $C^*$-algebras”, J. Oper. Theory, 19:2 (1988), 283–305 | MR | Zbl
[15] Vasselli E., “Continuous fields of $C^*$-algebras arising from extensions of tensor $C^*$-categories”, J. Funct. Anal., 199:1 (2003), 122–152 | DOI | MR | Zbl
[16] Bogolyubov P. N., Dorokhov A. E., “The current state of quark bag model”, Fiz. Elem. Chastits At. Yadra, 18:5 (1987), 917–959 (In Russian)
[17] Yoichiro N., “Why there are no free quarks?”, Usp. Fiz. Nauk, 124:1 (1978), 147–169 | DOI
[18] Platonova M. N., Kukulin V. I., “Hidden dibarions in one- and two-pion production in $NN$ collisions”, Nucl. Phys. A, 946 (2016), 117–157 | DOI
[19] Komarov V., Tsirkov D., Azaryan T., Bagdasarian Z., Dymov S., Gebel R., Gou B., Kacharava A., Khoukaz A., Kulikov A., Kurbatov V., Lorentz B., Macharashvili G., Mchedlishvili D., Merzliakov S., Mikirtytchiants S., Ohm H., Papenbrock M., Rathmann F., Serdyuk V., Shmakova V., Stroher H., Trusov S., Uzikov Yu., Valdau Yu., “Evidence for excitation of two resonance states in the isovector two baryon system with a mass of 2.2 GeV/$c^2$”, Phys. Rev. C, 93 (2016), Art. 065206, 8 pp. | DOI
[20] Sitdikov A. S., Nikitin A. S., Khamzin A. A., “Rotational properties of $N\approx Z$ nuclei at the presence of neutron-proton correlations”, Yad. Fiz., 71 (2008), 262–272 (In Russian)
[21] Landau L. D., Lifshitz E. M., Course of Theoretical Physics, v. III, Quantum Mechanics (Non-Relativistic Theory), Pergamon Press, 1977, 677 pp. | MR | MR
[22] Berestetskii V. B., Lifshitz E. M., Pitaevskii E. P., Course of Theoretical Physics, v. IV, Quantum Electrodynamics, Butterworth-Heinemann, 1982, 652 pp. | MR