A simple algebraic model for few-nucleon systems in the presence of non-Abelian superselection rules
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 159 (2017) no. 2, pp. 191-203 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Traditionally, the dynamics of a quantum physical system is described on the basis of the field models, where the fundamental role is played by the algebra of quantized fields and its automorphisms (forming a compact group). However, despite this imporant role of quantized fields, the fields are unobservable quantities. As shown by R. Haag, a quantum physical system can also be described in a dual way, where the algebra of observables and the semigroup (category) of its endomorphisms are taken as the initial object. Both approaches should provide practically the same information about the physical system, but the second approach is more natural, because it is based only on the experimentally observed information. In this case, the concept of duality reduces to the existence of a dual object to a compact group: in the case of the Abelian group, this is a group of its characters (Pontryagin duality); in the case of the non-Abelian group, this is the category of representations of the given group (Tannaka–Krein duality). From the physical point of view, the dual object describes charges (Abelian charges in the case of the Abelian compact group and non-Abelian ones in the case of the non-Abelian group) and, hence, the superselected structure of the physical system. We have developed a model for describing non-Abelian isotopic charges of nucleon systems. The category of representations of the compact isotopic rotation group describes the superselected structure by isospin, and each irreducible representation is indexed by one of the numbers $\{0;1/2;1;3/2;2;\dots\}$. It has been shown that a special projection operator belonging to the algebra of endomorphisms of a fixed object of the category allows to obtain a bound state of nucleons by projecting onto antisymmetric subspace. The states of such nucleons obey parastatistics of the order 2. It has been also demonstrated that the intertwining operators of objects with a vacuum sector correspond to the fields carrying isotopic charges. Since the model takes into account the conservation of isospin, it is also applicable to the study of resonances, which are under heated discussions at the present time.
Keywords: Cuntz algebra, tensor monoidal $C^*$-category, dibaryon system, superselection rules.
Mots-clés : isospin
@article{UZKU_2017_159_2_a4,
     author = {M. I. Kirillov and A. S. Nikitin and A. S. Sitdikov},
     title = {A simple algebraic model for few-nucleon systems in the presence of {non-Abelian} superselection rules},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {191--203},
     year = {2017},
     volume = {159},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2017_159_2_a4/}
}
TY  - JOUR
AU  - M. I. Kirillov
AU  - A. S. Nikitin
AU  - A. S. Sitdikov
TI  - A simple algebraic model for few-nucleon systems in the presence of non-Abelian superselection rules
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2017
SP  - 191
EP  - 203
VL  - 159
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2017_159_2_a4/
LA  - ru
ID  - UZKU_2017_159_2_a4
ER  - 
%0 Journal Article
%A M. I. Kirillov
%A A. S. Nikitin
%A A. S. Sitdikov
%T A simple algebraic model for few-nucleon systems in the presence of non-Abelian superselection rules
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2017
%P 191-203
%V 159
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2017_159_2_a4/
%G ru
%F UZKU_2017_159_2_a4
M. I. Kirillov; A. S. Nikitin; A. S. Sitdikov. A simple algebraic model for few-nucleon systems in the presence of non-Abelian superselection rules. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 159 (2017) no. 2, pp. 191-203. http://geodesic.mathdoc.fr/item/UZKU_2017_159_2_a4/

[1] Haag R., Local Quantum Physics. Fields, Particles, Algebras, Springer-Verlag, Berlin–Heidelberg, 1996, 392 pp. | MR | Zbl

[2] Khoruzhii S. S., Introduction to Quantum Field Theory, Nauka, Moscow, 1986, 304 pp. (In Russian) | MR

[3] Doplicher S., Haag R., Roberts J. E., “Local observables and particle statistics. I”, Commun. Math. Phys., 23:3 (1971), 199–230 | DOI | MR

[4] Doplicher S., Haag R., Roberts J. E., “Local observables and particle statistics. II”, Commun. Math. Phys., 35:1 (1974), 49–85 | DOI | MR

[5] Doplicher S., Roberts J. E., “Why there is field algebra with a compact gauge group describing the superselection structure in particle physics”, Commun. Math. Phys., 131:1 (1990), 51–107 | DOI | MR | Zbl

[6] Tannaka T., “Über den Dualitätssatz der nichtkommutativen topologischen Gruppen”, Tohoku Math. J., 45 (1939), 1–12

[7] Krein M. G., “A principle of duality for a bicompact group and a square block-algebra”, Dokl. Akad. Nauk. SSSR, 69 (1949), 725–728 | MR

[8] Deligne P., “Categories tannakiennes”, The Grothendieck Festschrift, A Collect. Artic. in Honor of the 60th Birthday of A. Grothendieck, v. II, Birkhauser, Boston, 1990, 111–195 | MR | Zbl

[9] Doplicher S., Roberts J. E., “A new duality theory for compact groups”, Invent. Math., 98:1 (1989), 157–218 | DOI | MR | Zbl

[10] Doplicher S., Roberts J. E., “Endomorphisms of $C^*$-algebras, cross products and duality for compact groups”, Ann. Math., 130:1 (1989), 75–119 | DOI | MR | Zbl

[11] Mac Lane S., Categories of the Working Mathematician, Springer, New York, 1978, 317 pp. | MR

[12] Ghez P., Lima R., Roberts J. E., “$W^*$-categories”, Pac. J. Math., 120:1 (1985), 79–109 | DOI | MR | Zbl

[13] Doplicher S., Roberts J. E., “Duals of compact Lie groups realized in the Cuntz algebras and their actions on $C^*$-algebras”, J. Funct. Anal., 74:1 (1987), 96–120 | DOI | MR | Zbl

[14] Doplicher S., Roberts J. E., “Compact group actions on $C^*$-algebras”, J. Oper. Theory, 19:2 (1988), 283–305 | MR | Zbl

[15] Vasselli E., “Continuous fields of $C^*$-algebras arising from extensions of tensor $C^*$-categories”, J. Funct. Anal., 199:1 (2003), 122–152 | DOI | MR | Zbl

[16] Bogolyubov P. N., Dorokhov A. E., “The current state of quark bag model”, Fiz. Elem. Chastits At. Yadra, 18:5 (1987), 917–959 (In Russian)

[17] Yoichiro N., “Why there are no free quarks?”, Usp. Fiz. Nauk, 124:1 (1978), 147–169 | DOI

[18] Platonova M. N., Kukulin V. I., “Hidden dibarions in one- and two-pion production in $NN$ collisions”, Nucl. Phys. A, 946 (2016), 117–157 | DOI

[19] Komarov V., Tsirkov D., Azaryan T., Bagdasarian Z., Dymov S., Gebel R., Gou B., Kacharava A., Khoukaz A., Kulikov A., Kurbatov V., Lorentz B., Macharashvili G., Mchedlishvili D., Merzliakov S., Mikirtytchiants S., Ohm H., Papenbrock M., Rathmann F., Serdyuk V., Shmakova V., Stroher H., Trusov S., Uzikov Yu., Valdau Yu., “Evidence for excitation of two resonance states in the isovector two baryon system with a mass of 2.2 GeV/$c^2$”, Phys. Rev. C, 93 (2016), Art. 065206, 8 pp. | DOI

[20] Sitdikov A. S., Nikitin A. S., Khamzin A. A., “Rotational properties of $N\approx Z$ nuclei at the presence of neutron-proton correlations”, Yad. Fiz., 71 (2008), 262–272 (In Russian)

[21] Landau L. D., Lifshitz E. M., Course of Theoretical Physics, v. III, Quantum Mechanics (Non-Relativistic Theory), Pergamon Press, 1977, 677 pp. | MR | MR

[22] Berestetskii V. B., Lifshitz E. M., Pitaevskii E. P., Course of Theoretical Physics, v. IV, Quantum Electrodynamics, Butterworth-Heinemann, 1982, 652 pp. | MR