Normal coordinates in affine geometry
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 159 (2017) no. 1, pp. 47-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Manifolds of affine geometry of general type with nontrivial metric, torsion, and nonmetricity tensor have been considered. These manifolds have recently attracted much interest due to the construction of generalized gravity models. Assuming that all geometric objects are real analytic, normal coordinates have been constructed in the neighborhood of an arbitrary point by decomposing the connection and metric components to the Taylor series. It has been shown that normal coordinates generalize the Cartesian coordinates in the Euclidean space to the case of manifolds with affine geometry of general type. Components of an arbitrary real analytic tensor field in the neighborhood of each point can be expressed as power series with coefficients constructed from the covariant derivatives, curvature and torsion tensors computed at the decomposition point. The power series have been explicitly summed for constant curvature spaces, and an expression for the metric in normal coordinates has been found. It has been shown that normal coordinates define the smooth surjective map of the Euclidean spaces to constant curvature manifolds. Equations for extremals in the constant curvature spaces have been explicitly integrated in normal coordinates. The relation between normal coordinates and exponential map has been analyzed.
Keywords: normal coordinates, Gaussian coordinates, Riemannian coordinates.
@article{UZKU_2017_159_1_a4,
     author = {M. O. Katanaev},
     title = {Normal coordinates in affine geometry},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {47--63},
     year = {2017},
     volume = {159},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2017_159_1_a4/}
}
TY  - JOUR
AU  - M. O. Katanaev
TI  - Normal coordinates in affine geometry
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2017
SP  - 47
EP  - 63
VL  - 159
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2017_159_1_a4/
LA  - ru
ID  - UZKU_2017_159_1_a4
ER  - 
%0 Journal Article
%A M. O. Katanaev
%T Normal coordinates in affine geometry
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2017
%P 47-63
%V 159
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2017_159_1_a4/
%G ru
%F UZKU_2017_159_1_a4
M. O. Katanaev. Normal coordinates in affine geometry. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 159 (2017) no. 1, pp. 47-63. http://geodesic.mathdoc.fr/item/UZKU_2017_159_1_a4/

[1] Riemann B., “Über die Hypothesen, welche der Geometrie zu Grunde liegen”, Nachrichten von der Gesellschaft von Wissenschaften Göttingen, 13 (1868), 133–152 (In German) | MR

[2] Eisenhart L. P., Riemannian Geometry, Princeton Univ. Press, Princeton, 1926, 252 pp. | MR | Zbl

[3] Cartan É., Leçons sur la géométrie des espaces de Riemann, Gauthier-Villars, Paris, 1928, 273 pp. (In French) | MR

[4] Rashevskii P. K., Riemannian Geometry and Tensor Analysis, Nauka, Moscow, 1967, 664 pp. (In Russian) | MR

[5] Petrov A. Z., New Methods in General Relativity Theory, Nauka, Moscow, 1966, 496 pp. (In Russian) | MR

[6] Katanaev M. O., Geometrical Methods in Mathematical Physics. Applications in Quantum Mechanics, Part 1, MIAN, Moscow, 2015, 176 pp. (In Russian)

[7] Katanaev M. O., Geometrical Methods in Mathematical Physics. Applications in Quantum Mechanics, Part 2, MIAN, Moscow, 2015., 185 pp. (In Russian)

[8] Eisenhart L. P., Non-Riemannian Geometry, Am. Math. Soc., N.Y., 1927, 184 pp. | MR | Zbl

[9] Schouten J. A., Struik D. J., Einfuhrung in die neueren Methoden der Differntialgeometrie, v. I, Noordhoff, Groningen, 1935, 338 pp. (In German)

[10] Fermi E., “Sopra i fenomeni che avvengono in vicinanza di una linea oraria”, Atti Acad. Naz. Lincei Rend. Cl. Sci. Fiz. Mat. Nat., 31 (1922), 21–23, 51–52, 101–103. (In Italian) | Zbl

[11] Katanaev M. O., “Killing vector fields and a homogeneous isotropic universe”, Phys. Usp., 59:7 (2016), 689–700 ; arXiv: 1610.05628[gr-qc] | DOI | DOI

[12] Katanaev M. O., “Lorentz invariant vacuum solutions in general relativity”, Proc. Steklov Inst. Math., 290:1, 138–142 ; arXiv: 1602.06331 | DOI | MR | Zbl

[13] Whitehead J. H. C., “Convex regions in the geometry of paths”, Quart. J. Math. Oxford Ser., 3 (1932), 33–42 | DOI | Zbl