@article{UZKU_2017_159_1_a4,
author = {M. O. Katanaev},
title = {Normal coordinates in affine geometry},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {47--63},
year = {2017},
volume = {159},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2017_159_1_a4/}
}
M. O. Katanaev. Normal coordinates in affine geometry. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 159 (2017) no. 1, pp. 47-63. http://geodesic.mathdoc.fr/item/UZKU_2017_159_1_a4/
[1] Riemann B., “Über die Hypothesen, welche der Geometrie zu Grunde liegen”, Nachrichten von der Gesellschaft von Wissenschaften Göttingen, 13 (1868), 133–152 (In German) | MR
[2] Eisenhart L. P., Riemannian Geometry, Princeton Univ. Press, Princeton, 1926, 252 pp. | MR | Zbl
[3] Cartan É., Leçons sur la géométrie des espaces de Riemann, Gauthier-Villars, Paris, 1928, 273 pp. (In French) | MR
[4] Rashevskii P. K., Riemannian Geometry and Tensor Analysis, Nauka, Moscow, 1967, 664 pp. (In Russian) | MR
[5] Petrov A. Z., New Methods in General Relativity Theory, Nauka, Moscow, 1966, 496 pp. (In Russian) | MR
[6] Katanaev M. O., Geometrical Methods in Mathematical Physics. Applications in Quantum Mechanics, Part 1, MIAN, Moscow, 2015, 176 pp. (In Russian)
[7] Katanaev M. O., Geometrical Methods in Mathematical Physics. Applications in Quantum Mechanics, Part 2, MIAN, Moscow, 2015., 185 pp. (In Russian)
[8] Eisenhart L. P., Non-Riemannian Geometry, Am. Math. Soc., N.Y., 1927, 184 pp. | MR | Zbl
[9] Schouten J. A., Struik D. J., Einfuhrung in die neueren Methoden der Differntialgeometrie, v. I, Noordhoff, Groningen, 1935, 338 pp. (In German)
[10] Fermi E., “Sopra i fenomeni che avvengono in vicinanza di una linea oraria”, Atti Acad. Naz. Lincei Rend. Cl. Sci. Fiz. Mat. Nat., 31 (1922), 21–23, 51–52, 101–103. (In Italian) | Zbl
[11] Katanaev M. O., “Killing vector fields and a homogeneous isotropic universe”, Phys. Usp., 59:7 (2016), 689–700 ; arXiv: 1610.05628[gr-qc] | DOI | DOI
[12] Katanaev M. O., “Lorentz invariant vacuum solutions in general relativity”, Proc. Steklov Inst. Math., 290:1, 138–142 ; arXiv: 1602.06331 | DOI | MR | Zbl
[13] Whitehead J. H. C., “Convex regions in the geometry of paths”, Quart. J. Math. Oxford Ser., 3 (1932), 33–42 | DOI | Zbl