@article{UZKU_2017_159_1_a2,
author = {A. R. Gaynullina and S. N. Tronin},
title = {Algebras over the operad of hollow cubes and a~new metric function on the non-negative quadrant of the {Euclidean} plane},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {21--32},
year = {2017},
volume = {159},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2017_159_1_a2/}
}
TY - JOUR AU - A. R. Gaynullina AU - S. N. Tronin TI - Algebras over the operad of hollow cubes and a new metric function on the non-negative quadrant of the Euclidean plane JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2017 SP - 21 EP - 32 VL - 159 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZKU_2017_159_1_a2/ LA - ru ID - UZKU_2017_159_1_a2 ER -
%0 Journal Article %A A. R. Gaynullina %A S. N. Tronin %T Algebras over the operad of hollow cubes and a new metric function on the non-negative quadrant of the Euclidean plane %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2017 %P 21-32 %V 159 %N 1 %U http://geodesic.mathdoc.fr/item/UZKU_2017_159_1_a2/ %G ru %F UZKU_2017_159_1_a2
A. R. Gaynullina; S. N. Tronin. Algebras over the operad of hollow cubes and a new metric function on the non-negative quadrant of the Euclidean plane. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 159 (2017) no. 1, pp. 21-32. http://geodesic.mathdoc.fr/item/UZKU_2017_159_1_a2/
[1] Gaynullina A., “On one class of commutative operads”, Asian-Eur. J. Math., 10:1 (2017), 1–34 | DOI | MR | Zbl
[2] Deza M., Deza E., Encyclopedia of Distances, Springer-Verlag, Berlin-Heidelberg, 2016, xxii, 756 pp. | MR | Zbl
[3] Deza M. M., Laurent M., Geometry of Cuts and Metrics, Springer, Berlin–Heidelberg, 1997, 588 pp. | MR | Zbl
[4] Loday J.-L., Vallette B., Algebraic Operads, Grundlehren der mathematischen Wissenschaften, 346, Springer-Verlag, Berlin–Heidelberg, 2012, xxiv, 636 pp. | DOI | MR | Zbl
[5] Markl M., Shnider S., Stasheff J., Operads in Algebra, Topology and Physics, Math. Surveys and Monographs, 96, Amer. Math. Soc., 2002, 349 pp. | MR | Zbl
[6] Bremner M. R., Dotsenko V., Algebraic Operads. An Algorithmic Companion, CRC Press, Boca Raton–London–N.Y., 2016, xvii, 361 pp. | MR | Zbl
[7] Tronin S. N., “Operads and varieties of algebras defined by polylinear identities”, Sib. Math. J., 47:3 (2006), 555–573 | DOI | MR | Zbl
[8] Tronin S. N., “Natural multitransformations of multifunctors”, Russ. Math., 55:11 (2011), 49–60 | DOI | MR | Zbl
[9] Tronin S. N., “Operads in the category of convexors. I”, Russ. Math., 46:3 (2002), 38–46 | MR | Zbl
[10] Tronin S. N., “Algebras over operad of spheres”, Russ. Math., 54:3 (2010), 63–71 | DOI | MR | Zbl