On variants for solvability of a three-dimensional Volterra equation in quadratures
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 4, pp. 557-569 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A linear integral equation of the general type with three independent variables, for which the special case of this equation is known, has been studied along with indication of certain variants of solving it in quadratures. In this paper, new variants of such cases have been found by developing the technique used previously by the author for similar equations with two independent variables. In the first step of reasoning, a method has been suggested for reduction of the original integral equation to a differential one, the Goursat boundary values for which are calculated in quadratures under certain conditions. Then, two approaches have been applied to the Goursat problem: direct construction of its solutions based on the already known results; factorization of the left side of the differential equation by using the first- and second-order operators. Each of these approaches allows to single out a particular class of integral equations of the considered type that are solved in quadratures.
Mots-clés : Volterra equation, Goursat problem, solution in quadratures
Keywords: factorization.
@article{UZKU_2016_158_4_a7,
     author = {I. M. Shakirova},
     title = {On variants for solvability of a~three-dimensional {Volterra} equation in quadratures},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {557--569},
     year = {2016},
     volume = {158},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2016_158_4_a7/}
}
TY  - JOUR
AU  - I. M. Shakirova
TI  - On variants for solvability of a three-dimensional Volterra equation in quadratures
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2016
SP  - 557
EP  - 569
VL  - 158
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2016_158_4_a7/
LA  - ru
ID  - UZKU_2016_158_4_a7
ER  - 
%0 Journal Article
%A I. M. Shakirova
%T On variants for solvability of a three-dimensional Volterra equation in quadratures
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2016
%P 557-569
%V 158
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2016_158_4_a7/
%G ru
%F UZKU_2016_158_4_a7
I. M. Shakirova. On variants for solvability of a three-dimensional Volterra equation in quadratures. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 4, pp. 557-569. http://geodesic.mathdoc.fr/item/UZKU_2016_158_4_a7/

[1] Zhegalov V. I., “Solving Volterra partial integral equations using differential equations”, Differ. Uravn., 44:7 (2008), 874–882 (In Russian) | MR | Zbl

[2] Shakirova I. M., “Solvability conditions in quadratures of two Volterra equations”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 155, no. 4, 2013, 90–98 (In Russian) | MR | Zbl

[3] Bitsadze A. V., Equations of Mathematical Physics, Nauka, Moscow, 1982, 336 pp. (In Russian) | MR

[4] Zhegalov V. I., Mironov A. N., Differential Equations with Higher Partial Derivatives, Izd. Kazan. Mat. O-va, Kazan, 2001, 226 pp. (In Russian)

[5] Zhegalov V. I., “On the Cases of Solvability of Hyperbolic Equations in Terms of Special Functions”, Nonclassical Equations of Mathematical Physics, Novosibirsk, 2002, 73–79 (In Russian) | Zbl

[6] Zhegalov V. I., Sarvarova I. M., “Solvability of the Goursat problem in quadratures”, Russ. Math., 57:3 (2013), 56–59 | DOI | MR | Zbl

[7] Zhegalov V. I., Mironov A. N., Utkina E. A., Equations with Dominant Partial Derivative, Izd. Kazan. Univ., Kazan, 2014, 385 pp. (In Russian)

[8] Shakirova I. M., “On solvability of three-dimensional Goursat problem in quadratures”, Proc. Int. Conf.: Differential Equations and Mathematical Modeling, Izd. VSGTU, Ulan-Ude, 2015, 113–114 (In Russian)

[9] Shakirova I. M., “On solvability of three-dimensional Goursat problem”, Tr. Mat. Tsentra im. N. I. Lobachevskogo, 51, 2015, 476–478 (In Russian)

[10] Bateman H., Erdeyn A., Higher Transcendental Functions, v. 1, Nauka, Moscow, 1973, 448 pp. (In Russian) | MR