@article{UZKU_2016_158_4_a2,
author = {L. L. Glazyrina and M. F. Pavlova},
title = {On an approximate solution method for the problem of surface and groundwater combined movement with exact approximation on the section line},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {482--499},
year = {2016},
volume = {158},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2016_158_4_a2/}
}
TY - JOUR AU - L. L. Glazyrina AU - M. F. Pavlova TI - On an approximate solution method for the problem of surface and groundwater combined movement with exact approximation on the section line JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2016 SP - 482 EP - 499 VL - 158 IS - 4 UR - http://geodesic.mathdoc.fr/item/UZKU_2016_158_4_a2/ LA - ru ID - UZKU_2016_158_4_a2 ER -
%0 Journal Article %A L. L. Glazyrina %A M. F. Pavlova %T On an approximate solution method for the problem of surface and groundwater combined movement with exact approximation on the section line %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2016 %P 482-499 %V 158 %N 4 %U http://geodesic.mathdoc.fr/item/UZKU_2016_158_4_a2/ %G ru %F UZKU_2016_158_4_a2
L. L. Glazyrina; M. F. Pavlova. On an approximate solution method for the problem of surface and groundwater combined movement with exact approximation on the section line. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 4, pp. 482-499. http://geodesic.mathdoc.fr/item/UZKU_2016_158_4_a2/
[1] Antontsev S. N., Meirmanov A. M., Mathematical Models of Simultaneous Motions of Surface and Ground Waters, Izd. Novosib. Gos. Univ., Novosibirsk, 1979, 80 pp. (In Russian)
[2] Antontsev S. N., Epikhov G. R., Kashevarov A. A., Mathematical System Modelling of Water Exchange Processes, Nauka, Novosibirsk, 1986, 250 pp. (In Russian) | MR
[3] Timerbaev M. R., “Spaces with a graph norm and strengthened Sobolev spaces. I”, Russ. Math., 47:5 (2003), 52–62 | MR | Zbl
[4] Timerbaev M. R., “Spaces with a graph norm and stengthened Sobolev spaces. II”, Russ. Math., 47:9 (2003), 43–49 | MR | Zbl
[5] Glazyrina L. L., Pavlova M. F., “Convergence of implicit difference scheme for the problem of conjunctive ground water and surface flow with an arbitrary channel cross section”, J. Math. Sci., 71:6 (1994), 2744–2756 | DOI | MR | Zbl
[6] Glazyrina L. L., Pavlova M. F., “A uniqueness theorem for the solution of a problem in the theory of the joint motion of channel and underground waters”, Russ. Math., 44:11 (2000), 10–22 | MR | Zbl
[7] Glazyrina L. L., Pavlova M. F., “A uniqueness theorem for the solution of a problem in the theory of the joint motion of channel and underground waters with nonstationary boundary conditions”, Isseld. Prikl. Mat. Inf., 24, 2003, 31–42 (In Russian)
[8] Glazyrina L. L., Pavlova M. F., “On uniqueness of the solution of a variational inequality of the coupled movement of the underground and surface waters theory with nonhomogeneous bounds and nonhomogeneous boundary conditions”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 149, no. 4, 2007,, 73–89 (In Russian)
[9] Glazyrina L. L., Pavlova M. F., “On the solvability of the problem of the coupled movement of underground and surface waters with nonhomogeneous bounds to the solution”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 154, no. 1, 2012,, 147–161 (In Russian)
[10] Glazyrina L. L., Pavlova M. F., “Numerical solution of the nonstationary problem of conjunctive motion of ground and surface water”, J. Sov. Math., 61:6 (1992), 2417–2421 | DOI | MR
[11] Glazyrina L. L., Pavlova M. F., “The finite element method explicit scheme for a solution of one problem of surface and ground water combined movement”, IOP Conf. Ser.: Mater. Sci. Eng., 158:1 (2016.), Art. 012041, 7 pp.
[12] Kashevarov A. A., “Approximated Recording of the Vertical Flow in Hydraulic Filtration Models”, Boundary Problems of Filtration, Continuous Medium Dynamics, 108, Inst. Gidrodin. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 1994, 3–13 (In Russian)
[13] Nobi N., Das Gupta A., “Simulation of regional flow and salinity intrusion in an integrated stream-aquifer system in coastal region: Southwest region of Bangladesh”, Ground Water, 35:5 (1997), 786–796 | DOI
[14] Glazyrina O. V., Pavlova M. F., “Study of the convergence of the finite-element method for solving parabolic equations with a nonlinear nonlocal space operator”, Differ. Equations, 51:7 (2015), 876–889 | DOI | MR | Zbl
[15] Glazyrina O. V., Pavlova M. F., “On the solvability of an evolution variational inequality with a nonlocal space operator”, Differ. Equations, 50:7 (2014), 873–887 | DOI | MR | Zbl
[16] Pavlova M. F., “On the solvability of nonlocal nonstationary problems with double degeneration”, Differ. Equations, 47:8 (2011), 1161–1175 | DOI | MR | Zbl
[17] Dautov R. Z., Karchevskii M. M., An Introduction to the Theory of Finite Element Methods, Kazan. Univ., Kazan, 2011, 240 pp. (In Russian)
[18] Korneev V. G., Schemes of the Method of Finite Elements for High Orders of Accuracy, LGU, Leningrad, 1977, 206 pp. (In Russian) | MR
[19] Lions J.-L., Some Methods of Solving Non-Linear Boundary Value Problems, Mir, Moscow, 1972, 588 pp. (In Russian) | MR
[20] Pavlova M. F., “Investigation of the equations of nonstationary nonlinear filtration”, Differ. Uravn., 23:7 (1987), 1436–1446 (In Russian) | MR | Zbl
[21] Alt H. W., Luckhaus S., “Quasilinear elliptic-parabolic differential equation”, Mat. Z., 183:8 (1983), 311–341 | MR | Zbl