Polynomials generating maximal real subfields of circular fields
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 4, pp. 469-481 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We have constructed recurrence formulas for polynomials $q_n(x)\in\mathbb Q[x]$, any root of which generates the maximal real subfield of circular field $K_{2n}$. It has been shown that all real subfields of fixed field $K_{2n}$ can be described by using polynomial $q_n(x)$ and its Galois group. Furthermore, a methodology has been developed for presentation of square radical $\sqrt d$, $d\in\mathbb N$, $d>1$ in the form of a polynomial with rational coefficients relative to $2\cos(\pi/n)$ at the corresponding $n$. The theoretical results have been verified by a number of examples.
Keywords: algebraic number, circular fields and their subfields
Mots-clés : minimal polynomial, Galois group.
@article{UZKU_2016_158_4_a1,
     author = {I. G. Galyautdinov and E. E. Lavrentyeva},
     title = {Polynomials generating maximal real subfields of circular fields},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {469--481},
     year = {2016},
     volume = {158},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2016_158_4_a1/}
}
TY  - JOUR
AU  - I. G. Galyautdinov
AU  - E. E. Lavrentyeva
TI  - Polynomials generating maximal real subfields of circular fields
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2016
SP  - 469
EP  - 481
VL  - 158
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2016_158_4_a1/
LA  - ru
ID  - UZKU_2016_158_4_a1
ER  - 
%0 Journal Article
%A I. G. Galyautdinov
%A E. E. Lavrentyeva
%T Polynomials generating maximal real subfields of circular fields
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2016
%P 469-481
%V 158
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2016_158_4_a1/
%G ru
%F UZKU_2016_158_4_a1
I. G. Galyautdinov; E. E. Lavrentyeva. Polynomials generating maximal real subfields of circular fields. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 4, pp. 469-481. http://geodesic.mathdoc.fr/item/UZKU_2016_158_4_a1/

[1] van der Waerden B. L., Algebra, Nauka, Moscow, 1979, 623 pp. (In Russian) | MR

[2] Leng S., Algebra, Mir, Moscow, 1968, 564 pp. (In Russian)

[3] Prasolov V. V., Polynominals, MTsIMO, Moscow, 2003, 335 pp. (In Russian)

[4] Galyautdinov I. G., Galieva L. I., “Galois groups for one class equations”, Asian-Eur J. Math., 4:3 (2011), 427–436 | DOI | MR | Zbl

[5] Borevich Z. I., Shafarevich I. R., Number Theory, Nauka, Moscow, 1985., 504 pp. (In Russian) | MR

[6] Galyautdinov I. G., Lavrentyeva E. E., Khusainova E. D., “Quadratic fieldsn as subfields of circular fields”, Izv. Smolensk. Gos. Univ., 2012, no. 4, 346–356 (In Russian)

[7] Kostrikin A. I., Introduction to Algebra, Part 3, Fizmatlit, Moscow, 2001, 272 pp. (In Russian) | MR

[8] Chebotarev N. G., Basic Galois Theory, Part 1, ONTI, Moscow, 1934, 222 pp. (In Russian)

[9] Galyautdinov I. G., Lavrentyeva E. E., Khusainova E. D., “Some applications of Tschirnhausen problem”, Mesh Methods For Boundary Value Problems And Applications, Proc. 10th Int. Conference, Izd. Kazan. Univ., Kazan, 2014, 184–188 (In Russian)

[10] Galyautdinov I. G., Lavrentyeva E. E., “Determination of the minimal polynomials of algebraic numbers of the form $\tg^2 (\pi/n)$ by the Tschirnhausen transformation”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 157, no. 2, 2015, 20–27 (In Russian) | Zbl