Geometrically nonlinear problem of longitudinal and transverse bending of a sandwich plate with transversally soft core
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 4, pp. 453-468 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of determining the stress-strain state a sandwich plate with a transversally soft core in one-dimensional geometrically nonlinear formulation has been considered. It has been assumed that in the right end section the edges of the carrier layers are rigidly clamped and there is no adhesive bond between the core and the support element, and in the left end section the edges of the carrier layers of the plate are hinged on an absolutely stiff in the transverse direction diaphragm glued to the end section of the core, the load is applied in the middle surface of the first carrier layer from the left side. On the basis of the generalized Lagrange principle, a general formulation has been created in the form of an operator equation in the Sobolev space. The properties of the operator have been established, i.e., its pseudo-monotonicity and coercivity.Thus, a theorem on the existence of a solution has been established. A two-layer iterative method has been suggested for solving the problem. Considering additional properties of the operator, i.e., its quasipotentiality and bounded Lipschitz continuity, convergence of the method has been investigated. The variation limits of the iteration parameter ensuring the method convergence have been established. A software package has been developed, with the help of which subsequent numerical experiments for the model problem of longitudinal-transverse bending of a sandwich plate have been carried out. Tabulation of both longitudinal and transverse loads has been carried out. The obtained results show that, in terms of weight perfection, the sandwich plate of an asymmetric structure with unequal thicknesses of the carrier layers is the most rational and equally stressed one under the considered loading.
Keywords: sandwich plate, transversely soft core, generalized statement, solvability theorem, iterative method, convergence theorem, numerical experiment.
@article{UZKU_2016_158_4_a0,
     author = {I. B. Badriev and M. V. Makarov and V. N. Paimushin},
     title = {Geometrically nonlinear problem of longitudinal and transverse bending of a~sandwich plate with transversally soft core},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {453--468},
     year = {2016},
     volume = {158},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2016_158_4_a0/}
}
TY  - JOUR
AU  - I. B. Badriev
AU  - M. V. Makarov
AU  - V. N. Paimushin
TI  - Geometrically nonlinear problem of longitudinal and transverse bending of a sandwich plate with transversally soft core
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2016
SP  - 453
EP  - 468
VL  - 158
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2016_158_4_a0/
LA  - ru
ID  - UZKU_2016_158_4_a0
ER  - 
%0 Journal Article
%A I. B. Badriev
%A M. V. Makarov
%A V. N. Paimushin
%T Geometrically nonlinear problem of longitudinal and transverse bending of a sandwich plate with transversally soft core
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2016
%P 453-468
%V 158
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2016_158_4_a0/
%G ru
%F UZKU_2016_158_4_a0
I. B. Badriev; M. V. Makarov; V. N. Paimushin. Geometrically nonlinear problem of longitudinal and transverse bending of a sandwich plate with transversally soft core. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 4, pp. 453-468. http://geodesic.mathdoc.fr/item/UZKU_2016_158_4_a0/

[1] Kobelev V. N., Calculation of Sandwich Structures: Handbook, Mashinostroenie, Moscow, 1984, 303 pp. (In Russian)

[2] Badriev I. B., Makarov M. V., Paimushin V. N., “On the interaction of composite plate having a vibration-absorbing covering with incident acoustic wave”, Russ. Math., 59:3 (2015), 66–71 | DOI | MR | Zbl

[3] Frostig Y., “Elastica of sandwich panels with a transversely flexible core – A high-order theory approach”, Int. J. Solids Struct., 46 (2009), 2043–2059 | DOI | Zbl

[4] Dyatchenko S. V., Ivanov A. P., A Technology for Manufacturing Ship Hulls out of Polymer Composites, Izd. Kaliningr. Tekh. Univ., Kaliningrad, 2007, 156 pp. (In Russian)

[5] Prokhorov B. F., Kobelev V. N., Three-Layer Constructions in Shipbuilding, Sudostroenie, Leningrad, 1972, 344 pp. (In Russian)

[6] Vasil'ev V. V., Dobryakov A. A., Dudchenko A. A., Fundamentals of the Planning and Production of Aircraft Structures Made of Composite Materials, MAI, Moscow, 1985, 218 pp. (In Russian)

[7] Krysin V. N., Layered Laminated Constructions in Aircraft Engineering, Mashinostroenie, Moscow, 1980, 232 pp. (In Russian)

[8] Pavlov N. A., Constructions of Rockets and Space Vehicles, Moscow, 1993, 149 pp. (Mashinostroenie)

[9] Ivanov V. A., Paimushin V. N., Polyakova T. V., “Refined theory of the stability of three-layer structures (linearized equations of neutral equilibrium and elementary one-dimensional problems)”, Russ. Math., 39:3 (1995), 13–22 | MR | Zbl

[10] Paimushin V. N., Bobrov S. N., “Refined geometric nonlinear theory of sandwich shells with a transversely soft core of medium thickness for investigation of mixed buckling forms”, Mech. Compos. Mater., 36:1 (2000), 59–66 | DOI

[11] Brezis H., “Équations et inéquations non-linéaires dans les espaces vectoriels en dualité”, Annales de l'institut Fourier (Grenoble), 18 (1968), 115–175 | DOI | MR | Zbl

[12] Lions J.-L., Quelque problèmes méthodes de résolution des problèmes aux limites nonlinéaires, Dunod, Paris, 1969, 554 pp. | MR

[13] Ekeland I., Temam R., Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976, 402 pp. | MR | Zbl

[14] Badriev I. B., Banderov V. V., Makarov M. V., Paimushin V. N., “Determination of stress-strain state of geometrically nonlinear sandwich plate”, Appl. Math. Sci., 9:78 (2015), 3887–3895 | DOI

[15] Badriev I. B., Makarov M. V., Paimushin V. N., “Solvability of physically and geometrically nonlinear problem of the theory of sandwich plates with transversally-soft core”, Russ. Math., 59:10 (2015), 57–60 | DOI | MR | Zbl

[16] Badriev I. B., Makarov M. V., Paimushin V. N., “Mathematical simulation of nonlinear problem of three-point composite sample bending test”, Procedia Eng., 150 (2016), 1056–1062 | DOI

[17] Badriev I. B., Garipova G. Z., Makarov M. V., Paymushin V. N., “Numerical solution of the issue about geometrically nonlinear behavior of sandwich plate with transversal soft filler”, Res. J. Appl. Sci., 10:8 (2015), 428–435 | DOI

[18] Badriev I. B., Banderov V. V., Makarov M. V., Paimushin V. N., “On the solvability of a nonlinear equilibrium problem for sandwich plates”, Mesh Methods for Boundary-Value Problems and Applications, Proc. 10th Int. Conference, Izd. Kazan. Univ., Kazan, 2014, 103–107 (In Russian)

[19] Badriev I. B., Banderov V. V., Garipova G. Z., Makarov M. V., Shagidullin R. R., “On the solvability of geometrically nonlinear problem of sandwich plate theory”, Appl. Math. Sci., 9:81–84 (2015), 4095–4102 | DOI

[20] Badriev I. B., Banderov V. V., Garipova G. Z., Makarov M. V., “On solvability of the nonlinear problem of sandwich plate equilibrium”, Vestn. Tambov. Univ., Ser. Est. Tekh. Nauki, 20:5 (2015), 1034–1037

[21] Badriev I. B., Garipova G. Z., Makarov M. V., Paimushin V. N., Khabibullin R. F., “Solving physically nonlinear equilibrium problems for sandwich plates with a transversally soft core”, Lobachevskii J. Math., 36:4 (2015), 474–481 | DOI | MR

[22] Badriev I. B., Makarov M. V., Paimushin V. N., “Numerical investigation of physically nonlinear problem of sandwich plate bending”, Procedia Eng., 150 (2016), 1050–1055 | DOI

[23] Badriev I. B., Banderov V. V., “Numerical method for solving variation problems in mathematical physics”, Appl. Mech. Mater., 668–669 (2014), 1094–1097 | DOI

[24] Badriev I. B., Banderov V. V., “Iterative Methods for Solving Variational Inequalities of the Theory of Soft Shells”, Lobachevskii J. Math., 35:4 (2014), 354–365 | DOI | MR

[25] Badriev I. B., Banderov V. V., Zadvornov O. A., “On the equilibrium problem of a soft network shell in the presence of several point loads”, Appl. Mech. Mater., 392 (2013), 188–190 | DOI | MR

[26] Badriev I. B., Zadvornov O. A., “Investigation of the solvability of an axisymmetric problem of determining the equilibrium position of a soft shell of revolution”, Russ. Math., 49:1 (2005), 21–26 | MR | Zbl

[27] Badriev I. B., Banderov V. V., “Numerical solution of the equilibrium of axisymmetric soft shells”, Vestn. Tambov. Gos. Tekh. Univ., 21:1 (2015), 29–35

[28] Paimushin V. N., “On variational methods for solving nonlinear three-dimensional problems of conjugation of deformable bodies”, Dokl. Akad. Nauk SSSR, 273:5 (1983), 1083–1086 (In Russian) | MR

[29] Paimushin V. N., “Generalized Reissner variational principle in nonlinear mechanics of three-dimensional composite solids, with applications to the theory of multilayer shells”, Mech. Solids, 22:2 (1987), 166–174

[30] Adams R. A., Sobolev Spaces, Acad. Press, New York–San Francisco–London, 1975, 286 pp. | MR | Zbl

[31] Vainberg M. M., A Variational Method and Monotonous Operators Method, Nauka, Moscow, 1972, 416 pp. (In Russian) | MR

[32] Hardy G. H., Littlewood J. E., Pólya G., Inequalities, Cambridge Univ. Press, Cambridge, 1934, 314 pp. | MR | Zbl

[33] Badriev I. B., Zadvornov O. A., Iteration of Methods for Solving Variational Inequalities in Hilbert Spaces, Kazan. Univ., Kazan, 2007, 152 pp. (In Russian)

[34] Vasil'ev F. P., Methods for Solving Extremal Problems, Nauka, Moscow, 1981, 400 pp. (In Russian) | MR

[35] Gajewskii H., Gröger K., Zacharias K., Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974, 281 pp. | MR

[36] Telyakovskii S. A., Lectures on Mathematical Analysis, Semester I, MIAN, Moscow, 2009, 212 pp. (In Russian) | MR

[37] Karchevskii M. M., “Solvability of variational problems in the nonlinear theory of shallow shells”, Differ. Equations, 27:7 (1991), 841–847 | MR

[38] Karchevskii M. M., Paimushin V. N., “Variational problems in the theory of three-layer shallow shells”, Differ. Equations, 30:7 (1994), 1126–1130 | MR

[39] Badriev I. B., Zadvornov O. A., Saddek A. M., “Convergence Analysis of Iterative Methods for Some Variational Inequalities with Pseudomonotone Operators”, Differ. Equations, 37:7 (2001), 934–942 | DOI | MR | Zbl

[40] Vainberg M. M., Variational Methods for the Study of Nonlinear Operators, Gostekhizdat, Moscow, 1956, 344 pp. (In Russian)

[41] Vainberg M. M., Lavrent'ev I. M., “Nonlinear quasi-potential operators”, Dokl. Akad. Nauk SSSR, 205:5 (1972), 1022–1024 (In Russian) | Zbl

[42] Badriev I. B., Karchevskii M. M., “Convergence of an iterative process in a Banach space”, J. Math. Sci., 71:6 (1994), 2727–2735 | DOI | MR | Zbl

[43] Badriev I. B., “On the solving of variational inequalities of stationary problems of two-phase flow in porous media”, Appl. Mech. Mater., 392 (2013), 183–187 | DOI

[44] Badriev I. B., Zadvornov O. A., Lyashko A. D., “A study of variable step iterative methods for variational inequalities of the second kind”, Differ. Equations, 40:7 (2004), 971–983 | DOI | MR | Zbl

[45] Badriev I. B., “Mathematical simulation of stationary seepage problem with multivalued law”, Vestn. Tambov. Univ., Ser. Estestv. Tekh. Nauki, 18:5–2 (2013), 2444–2446 (In Russian)

[46] Badriev I. B., Zadvornov O. A., “Iterative methods for solving variational inequalities of the second kind with inversely strongly monotone operators”, Russ. Math., 47:1 (2003), 18–26 | MR | Zbl

[47] Samarskii A. A., The theory of difference schemes, Marcel Dekker, Inc, New York, 2001, 761 pp. | MR | Zbl

[48] Paimushin V. N., “A stability theory of sandwich plates and shells (stages of development, current state, and lines of further investigations)”, Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2001, no. 2, 148–162 (In Russian)