On the boundary value problem for a three-dimensional analog of the Boussinesq differential equation
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 3, pp. 424-433 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper considers the questions of solvability and construction of the solution of the nonlocal boundary value problem for a three-dimensional analog of the homogeneous fourth-order Boussinesq differential equation. The spectral method is used based on separation of variables. The criterion of solvability of the considered problem is found. The solvability of the problem is proved under this criterion.
Mots-clés : Boussinesq equation
Keywords: fourth-order equation, three-dimensional domain, integral condition, solvability.
@article{UZKU_2016_158_3_a7,
     author = {T. K. Yuldashev},
     title = {On the boundary value problem for a~three-dimensional analog of the {Boussinesq} differential equation},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {424--433},
     year = {2016},
     volume = {158},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2016_158_3_a7/}
}
TY  - JOUR
AU  - T. K. Yuldashev
TI  - On the boundary value problem for a three-dimensional analog of the Boussinesq differential equation
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2016
SP  - 424
EP  - 433
VL  - 158
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2016_158_3_a7/
LA  - ru
ID  - UZKU_2016_158_3_a7
ER  - 
%0 Journal Article
%A T. K. Yuldashev
%T On the boundary value problem for a three-dimensional analog of the Boussinesq differential equation
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2016
%P 424-433
%V 158
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2016_158_3_a7/
%G ru
%F UZKU_2016_158_3_a7
T. K. Yuldashev. On the boundary value problem for a three-dimensional analog of the Boussinesq differential equation. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 3, pp. 424-433. http://geodesic.mathdoc.fr/item/UZKU_2016_158_3_a7/

[1] Turbin M. V., “Investigation of initial-boundary value problem for the Herschel–Bulkley mathematical fluid model”, Vestn. Voronezh. Gos. Univ., Ser. Fiz. Mat., 2013, no. 2, 246–257 (In Russian)

[2] Benney D. J., Luke J. C., “On the interactions of permanent waves of finite amplitude”, J. Math. Phys., 43:1–4 (1964), 309–313 | DOI | MR | Zbl

[3] Akhtyamov A. M., Ayupova A. R., “On solving the problem of diagnosing defects in a small cavity in the rod”, Zh. Srednevolzh. Mat. O-va, 12:3 (2010), 37–42 (In Russian)

[4] Shabrov S. A., “About the estimates of the functon of influence of a fourth-order mathematical model”, Vestn. Voronezh. Gos. Univ. Ser. Fiz. Mat., 2015, no. 2, 168–179 (In Russian) | Zbl

[5] Whitham G., Linear and Nonlinear Waves, Mir, Moscow, 1977, 622 pp. (In Russian)

[6] Gordeziani D. G., Avalishvili G. A., “Solution of nonlocal problems for one-dimensional oscillations of a medium”, Mat. Model., 12:1 (2000), 94–103 (In Russian) | MR | Zbl

[7] Pul'kina L. S., “A nonlocal problem for a hyperbolic equation with integral conditions of the 1st kind with time-dependent kernels”, Russ. Math., 56:10 (2012), 26–37 | DOI | MR | Zbl

[8] Yuldashev T. K., “An inverse problem for linear Fredholm partial integro-differential equation of fourth order”, Vestn. Voronezh. Gos. Univ., Ser. Fiz. Mat., 2015, no. 2, 180–189 (In Russian) | Zbl

[9] Yuldashev T. K., “An inverse problem for a nonlinear Fredholm integro-differential equation of fourth order with degenerate kernel”, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki, 19:4 (2015), 736–749 (In Russian) | DOI

[10] Yuldashev T. K., “On a mixed type fourth-order differential equation”, Izv. IMI UdGU, 2016, no. 1(47), 119–128 (In Russian)

[11] Polozhii G. N., Equations of Mathematical Physics, Vyssh. Shk., Moscow, 1964, 560 pp. (In Russian)

[12] Sabitov K. B., “Nonlocal problem for a parabolic-hyperbolic equation in a rectangular domain”, Math. Notes, 89:3 (2011), 562–567 | DOI | DOI | MR | Zbl