Keywords: fourth-order equation, three-dimensional domain, integral condition, solvability.
@article{UZKU_2016_158_3_a7,
author = {T. K. Yuldashev},
title = {On the boundary value problem for a~three-dimensional analog of the {Boussinesq} differential equation},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {424--433},
year = {2016},
volume = {158},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2016_158_3_a7/}
}
TY - JOUR AU - T. K. Yuldashev TI - On the boundary value problem for a three-dimensional analog of the Boussinesq differential equation JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2016 SP - 424 EP - 433 VL - 158 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2016_158_3_a7/ LA - ru ID - UZKU_2016_158_3_a7 ER -
%0 Journal Article %A T. K. Yuldashev %T On the boundary value problem for a three-dimensional analog of the Boussinesq differential equation %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2016 %P 424-433 %V 158 %N 3 %U http://geodesic.mathdoc.fr/item/UZKU_2016_158_3_a7/ %G ru %F UZKU_2016_158_3_a7
T. K. Yuldashev. On the boundary value problem for a three-dimensional analog of the Boussinesq differential equation. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 3, pp. 424-433. http://geodesic.mathdoc.fr/item/UZKU_2016_158_3_a7/
[1] Turbin M. V., “Investigation of initial-boundary value problem for the Herschel–Bulkley mathematical fluid model”, Vestn. Voronezh. Gos. Univ., Ser. Fiz. Mat., 2013, no. 2, 246–257 (In Russian)
[2] Benney D. J., Luke J. C., “On the interactions of permanent waves of finite amplitude”, J. Math. Phys., 43:1–4 (1964), 309–313 | DOI | MR | Zbl
[3] Akhtyamov A. M., Ayupova A. R., “On solving the problem of diagnosing defects in a small cavity in the rod”, Zh. Srednevolzh. Mat. O-va, 12:3 (2010), 37–42 (In Russian)
[4] Shabrov S. A., “About the estimates of the functon of influence of a fourth-order mathematical model”, Vestn. Voronezh. Gos. Univ. Ser. Fiz. Mat., 2015, no. 2, 168–179 (In Russian) | Zbl
[5] Whitham G., Linear and Nonlinear Waves, Mir, Moscow, 1977, 622 pp. (In Russian)
[6] Gordeziani D. G., Avalishvili G. A., “Solution of nonlocal problems for one-dimensional oscillations of a medium”, Mat. Model., 12:1 (2000), 94–103 (In Russian) | MR | Zbl
[7] Pul'kina L. S., “A nonlocal problem for a hyperbolic equation with integral conditions of the 1st kind with time-dependent kernels”, Russ. Math., 56:10 (2012), 26–37 | DOI | MR | Zbl
[8] Yuldashev T. K., “An inverse problem for linear Fredholm partial integro-differential equation of fourth order”, Vestn. Voronezh. Gos. Univ., Ser. Fiz. Mat., 2015, no. 2, 180–189 (In Russian) | Zbl
[9] Yuldashev T. K., “An inverse problem for a nonlinear Fredholm integro-differential equation of fourth order with degenerate kernel”, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki, 19:4 (2015), 736–749 (In Russian) | DOI
[10] Yuldashev T. K., “On a mixed type fourth-order differential equation”, Izv. IMI UdGU, 2016, no. 1(47), 119–128 (In Russian)
[11] Polozhii G. N., Equations of Mathematical Physics, Vyssh. Shk., Moscow, 1964, 560 pp. (In Russian)
[12] Sabitov K. B., “Nonlocal problem for a parabolic-hyperbolic equation in a rectangular domain”, Math. Notes, 89:3 (2011), 562–567 | DOI | DOI | MR | Zbl