@article{UZKU_2016_158_3_a6,
author = {V. Ju. Chebakova},
title = {Simulation of radio-frequency capacitive discharge at atmospheric pressure in argon},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {404--423},
year = {2016},
volume = {158},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2016_158_3_a6/}
}
TY - JOUR AU - V. Ju. Chebakova TI - Simulation of radio-frequency capacitive discharge at atmospheric pressure in argon JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2016 SP - 404 EP - 423 VL - 158 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2016_158_3_a6/ LA - ru ID - UZKU_2016_158_3_a6 ER -
%0 Journal Article %A V. Ju. Chebakova %T Simulation of radio-frequency capacitive discharge at atmospheric pressure in argon %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2016 %P 404-423 %V 158 %N 3 %U http://geodesic.mathdoc.fr/item/UZKU_2016_158_3_a6/ %G ru %F UZKU_2016_158_3_a6
V. Ju. Chebakova. Simulation of radio-frequency capacitive discharge at atmospheric pressure in argon. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 3, pp. 404-423. http://geodesic.mathdoc.fr/item/UZKU_2016_158_3_a6/
[1] Polak L. S. (Ed.), Plasma Physics and Chemistry: A Selection of Papers, Nauka, Moscow, 1971, 433 pp. (In Russian)
[2] Polak L. S., Lebedev Yu. A. (Eds.), Low-Temperature Plasma, v. 3, Chemistry of Plasma, Nauka, Novosibirsk, 1991, 328 pp. (In Russian)
[3] Fridman A., Plasma chemistry, Cambridge Univ. Press, Cambridge, 2008, 978 pp.
[4] Ouellette R., Barbier M., Cheremisinoff P., Low-Temperature Plasma Technology Applications, Energoatomizdat, Moscow, 1983, 144 pp. (In Russian)
[5] Mosse A. L., Burov I. O., Treatment of Dispersed Materials in Plasma Reactors, Nauka Tekh., Minsk, 1980, 205 pp. (In Russian)
[6] Tikhonova N. V., Zheltukhin V. S., Chebakova V. Yu., Borodaev I. A., “Mathematical model of high-frequency plasma processing of multilayer materials uppers”, Vestn. Kazan. Tekhnol. Univ., 15:17 (2012), 36–39 (In Russian)
[7] Abdullin I. Sh., Zheltukhin V. S., Kashapov N. F., “High-Frequency Plasma-Blasting Treatment of Materials at Low Pressures. Theory and Practice of Application”, Izd. Kazan. Univ., Kazan, 2000, 348 pp. (In Russian)
[8] Zheltukhin V. S., Chebakova V. Yu., Shneider M. N., “Modeling of a high-frequency capacitive discharge with a large inter-electrode distance”, Mesh Methods for Boundary-Value Problems and Applications, Proc. 9th All-Russ. Conf., Otechestvo, Kazan, 2012, 183–186 (In Russian)
[9] Badriev I. B., Zheltukhin V. S., Chebakova V. Yu., “On solving of some nonlinear boundary and initial boundary value problems”, Proc. XXII Int. Symp.: Dynamic and Technological Problems of Mechanics of Constructions and Continuous Media, OOO TRP, Moscow, 2016, 31–33 (In Russian)
[10] Savinov V. P., Physics of High-Frequency Capacitive Discharge, FIZMATLIT, Moscow, 2013, 308 pp. (In Russian)
[11] Raizer Yu. P., Shneider M. N., Yatsenko N. A., Radio-Frequency Capacitive Discharges: Physics. Experimental Technique. Applications, Izd. MFTI, Moscow, 1995, 320 pp. (In Russian)
[12] Chebert P., Braithwaite N., Physics of radio-frequency plasmas, Cambridge Univ. Press, Cambridge, 2011, 386 pp.
[13] Raizer Yu. P., Gas Discharge Physics, Izd. Dom Intellekt, Dolgoprudnyi, 2009, 736 pp. (In Russian)
[14] Lebedev Yu. A., Tatarinov A. V., Titov A. Yu., Epstein I. L., “Two-dimensional model of a non-equilibrium strongly non-uniform microwave discharge in a DC external field”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 156, no. 4, 2014, 120–132 (In Russian) | MR
[15] Chebakova V. Yu., Zheltukhin V. S., “On mathematical models of radio-frequency capacitive discharge”, Lect. Mater. Youth Sch.-Conf. within 10th All-Russ. Conf.: Mesh Methods for Boundary-Value Problems and Applications, Proc. N. I. Lobachevskii Math. Cent., Otechestvo, Kazan, 2013, 98–128 (In Russian)
[16] Abdullin I. Sh., Zheltukhin V. S., Chabakova V. Yu., “Radio-frequency capacitive discharge: modeling (review)”, Vestn. Kazan. Tekhnol. Univ., 17:23 (2014), 9–14 (In Russian)
[17] Martinez E. Castonos., Kabouzi Y., Makasheva K., Moisan M., “Modeling of microwave-sustained plasmas at atmospheric pressure with application to discharge contraction”, Phys. Rev. E, 70 (2004), Art. 066405 | DOI
[18] Chebakova V. Yu., “Numerical simulation of the high-frequency capacitive discharge”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 157, no. 2, 2015, 126–140 (In Russian) | MR
[19] Abdullin I. Sh., Zheltukhin V. S., Shneider M. N., Chebakova V. Yu., “Modeling of radio-frequency capacitive discharge in argon with account of heating of heavy particles”, Mat. Metody Tekh. Tekhnol., 2014, no. 5, 34–37 (In Russian)
[20] Abdullin I. Sh., Zheltukhin V. S., Chebakova V. Yu., Shneider M. N., “Non-stationary model of high-frequency capacitive discharge at low pressure”, Mesh Methods for Boundary-Value Problems and Applications, Proc. 10th Int. Conf., Izd. Kazan. Univ., Kazan, 2014, 15–20 (In Russian)
[21] Bikchantaev D. Kh., Zheltukhin V. S., Chebakova V. Yu., “Numerical investigation of of the interaction of high-frequency capacitive discharge with materials”, Theory of Control and Mathematical Modeling, Proc. All-Russ. Conf., Izd. Udmurt. Univ., Izhevsk, 2015, 241–242 (In Russian)
[22] Badriev I. B., “On the solving of variational inequalities of stationary problems of two-phase flow in porous media”, Appl. Mech. Mater., 392 (2013), 183–187 | DOI
[23] Badriev I. B., Nechaeva L. A., “Mathematical simulation of stedy filtration with multivalued law”, Vestn. Permsk. Nats. Issled. Politekh. Univ. Mekh., 2013, no. 3, 35–62 (In Russian)
[24] Badriev I. B., Karchevskii M. M., “Convergence of an iterative process in a Banach space”, J. Math. Sci., 71:6 (1994), 2727–2735 | DOI | MR | Zbl
[25] Badriev I., Banderov V., “Numerical method for solving variation problems in mathematical physics”, Appl. Mech. Mater., 668–669 (2014), 1094–1097 | DOI
[26] Badriev I. B., Banderov V. V., Makarov M. V., Paimushin V. N., “Determination of stress-strain state of geometrically nonlinear sandwich plate”, Appl. Math. Sci., 9:77-80 (2015), 3887–3895 | DOI
[27] Kudryavtsev A. A., Smirnov A. S., Tsendin L. D., Physics of Glow Discharge, Lan', St. Petersburg, 2010, 512 pp. (In Russian)
[28] Ferreira C. M., Loureiro J., Ricard A., “Populations in the metastable and the resonance levels of argon and stepwise ionization effects in a low-pressure argon positive column”, J. Appl. Phys., 57:82 (1985), 82–90 | DOI
[29] Dyatko N. A., Ionikh Yu. Z., Meshchanov A. V., Napartovich A. P., “Study of the dark phase in the initial stage of the positive column formation in an argon glow discharge”, Plasma Phys. Rep., 31:10 (2005), 871–885 | DOI
[30] Hagelaar G. J. M., de Hoog F. J., Kroesen G. M. W., “Boundary conditions in fluid models of gas discharges”, Phys. Rev. E, 62:1 (2000), 1452–1454 | DOI
[31] Hagelaar G. J. M., Pitchford L. C., “Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models”, Plasma Sources Sci. Techn., 14 (2005), 722–733 | DOI
[32] Lymberopoulos Dimitris P., Economou Demetre J., “Fluid simulations of glow discharge Effect of metastable atoms in argon”, J. Appl. Phys., 73:8 (1993), 3668–3679 | DOI
[33] Zhu Xi-Ming, Pu Yi-Kang, “Modeling of microwave- sustained plasmas at atmospheric pressure with application to discharge contraction”, J. Phys. D: Appl. Phys., 43 (2010), Art. 015204
[34] Balcon N. P., Aanesland A., Hagelaar G. J. M., Boswell R., Boeuf J. P., “Atmospheric pressure RF discharge in argon: optical diagnostic, fluid model and applications”, 28th ICPIG, Prague, Czech Republic, 2007, 957–960
[35] Balcon N. P., Hagelaar G. J. M., Boeuf J. P., “Numerical Model of an Argon Atmospheric Pressure RF Discharge”, IEEE Transact. on Plasma Science, 36:5 (2008), 2782–2787 | DOI
[36] Moravej M., Yang X., Hicks R. F., Penelon J., Babayan S. E., “A radio-frequency nonequilibrium atmospheric pressure plasma operating with argon and oxygen”, J. Appl. Phys., 99 (2006), Art. 093305, 6 pp. | DOI
[37] Epstein I. L., Gavrilović M., Jovircević S., Konjević N., Lebedev Yu. A., Tatarinov A. V., “The study of a homogeneous column of argon plasma at a pressure of 0.5 torr, generated by means of the Beenakker's cavity”, Eur. Phys. J. D, 68 (2014), Art. 334, 9 pp. | DOI
[38] Karoulina E., Lebedev Yu., “Computer simulation of microwave and DC plasmas comparative characterization of plasmas”, J. Phys. D: Appl. Phys., 25 (1992), 401–412 | DOI
[39] Smirnov B. M., “Modeling of gas discharge plasma”, Usp. Fiz. Nauk, 179:6 (2009), 591–604 (In Russian) | DOI
[40] Smirnov B. M., “Diffusion and mobility of ions in gas”, Usp. Fiz. Nauk, 92:1 (1967), 75–103 (In Russian) | DOI
[41] Fastovskii V. G., Rovinskii A. E., Petrovskii Yu. V., Inert Gases, Atomizdat, Moscow, 1972, 352 pp. (In Russian)
[42] MacDaniel I., The Processes of Collisions in Ionized Gases, Mir, Moscow, 1967, 832 pp. (In Russian)
[43] Boeuf J. P., Pitchford L. C., “Two-dimensional model of a capacitively coupled RF discharge and comparisons with experiments in the Gaseous Electronics Conference reference reactor”, Phys. Rev. E, 51:2 (1995), 1376–1390 | DOI
[44] Smirnov B. M., Excited Atoms, Enrgozadt, Moscow, 1982, 232 pp. (In Russian)
[45] Bora B., Bhuyan H., Favre M., Wyndham E., Chuaqui H., “Diagnostic of capacitively coupled low pressure radio frequency plasma: An approach through electrical discharge characteristic”, Int. J. Appl. Phys. Math., 1:2 (2011), 124–128 | DOI | MR
[46] Fedorenko R. P., Introduction into Computational Physics, Izd. MFTI, Moscow, 1994, 528 pp. (In Russian)
[47] Kulikovsky A. A., “A more accurate scharfetter-gummel algorithm of electron transport for semiconductor and gas discharge simulation”, J. Comput. Phys., 119 (1995), 149–155 | DOI | Zbl