Regression models of Koch wire dipole performance
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 3, pp. 388-403 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A family of balanced wire dipoles with the geometry of arms similar to the first-order Koch pre-fractal is considered. Regression and correlation analysis is performed for parameters defining the geometry of the considered antennas and their electrodynamic characteristics. A high degree of correlation of the base frequency and bandwidth with the dipole wire length is obtained. Regression models are developed for some of the electrodynamic characteristics of the antenna. Possibility of structural and parametrical synthesis of the wire antenna with predefined properties on the basis of regression models is shown.
Mots-clés : wire antenna, Koch dipole
Keywords: regression model, antenna performance.
@article{UZKU_2016_158_3_a5,
     author = {D. N. Tumakov and G. V. Abgaryan and D. E. Chickrin and P. A. Kokunin and A. S. Belov},
     title = {Regression models of {Koch} wire dipole performance},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {388--403},
     year = {2016},
     volume = {158},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2016_158_3_a5/}
}
TY  - JOUR
AU  - D. N. Tumakov
AU  - G. V. Abgaryan
AU  - D. E. Chickrin
AU  - P. A. Kokunin
AU  - A. S. Belov
TI  - Regression models of Koch wire dipole performance
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2016
SP  - 388
EP  - 403
VL  - 158
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2016_158_3_a5/
LA  - ru
ID  - UZKU_2016_158_3_a5
ER  - 
%0 Journal Article
%A D. N. Tumakov
%A G. V. Abgaryan
%A D. E. Chickrin
%A P. A. Kokunin
%A A. S. Belov
%T Regression models of Koch wire dipole performance
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2016
%P 388-403
%V 158
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2016_158_3_a5/
%G ru
%F UZKU_2016_158_3_a5
D. N. Tumakov; G. V. Abgaryan; D. E. Chickrin; P. A. Kokunin; A. S. Belov. Regression models of Koch wire dipole performance. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 3, pp. 388-403. http://geodesic.mathdoc.fr/item/UZKU_2016_158_3_a5/

[1] Balanis C. A., Antenna theory: analysis and design, John Wiley Sons, New Jersey, 1997, 1072 pp.

[2] Poole I., Telenius-Lowe S., Successful wire antennas, Radio Soc. G. B., Abbey Court., 2011, 237 pp.

[3] Singh K., Grewal V., Saxena R., “Fractal antennas: a novel miniaturization technique for wireless communications”, Int. J. Recent Trends Eng., 2:5 (2009), 172–176

[4] Nasr M. H. A., “Z-shaped dipole antenna and its fractal iterations”, Int. J. Network Secur. Its Appl., 5:5 (2013), 139–151 | DOI

[5] Milligan T. A., Modern Antenna Design, John Wiley Sons, New Jersey, 2005, 633 pp. | DOI

[6] Gianvittorio J. P., Rahmat-Samii Y., “Fractal antennas: A novel antenna miniaturization technique, and applications”, IEEE Antennas Propag. Mag., 44:1 (2002), 20–36 | DOI

[7] Baker J. M., Iskander M. F., “Electrically small fractal antennas”, Proc. IEEE Int. Symp. Antennas Propag., 2015, 1242–1243 | DOI

[8] Karpukov L. M., Onufrienko V. M., Romanenko S. N., “The properties of the fractal wire antennas”, Proc. MMET Int. Conf., v. 1, 2002, 310–312 | DOI

[9] Wagh K. H., “A review on fractal antennas for wireless communication”, Int. J. Rev. Electron. Commun. Eng., 32:2 (2015), 37–41

[10] Krzysztofik W. J., “Fractal geometry in electromagnetics applications – from antenna to metamaterials”, Microwave Rev., 19:2 (2013), 3–14

[11] Beigi P., Mohammadi P., “A novel small triple-band monopole antenna with crinkle fractal-structure”, Int. J. Electronics and Communications, 70:10 (2016), 1382–1387 | DOI

[12] Baliarda C. P., Romeu J., Cardama A., “The Koch monopole: A small fractal antenna”, IEEE Trans. Antennas Propag., 48:11 (2000), 1773–1781 | DOI

[13] Li Y., Mi Y., Wang Y., Li G., “The analysis and comparison of the electromagnetic radiation characteristic of the Koch fractal dipole”, Proc. ISAPE, 2012, 15–18 | DOI

[14] Slyusar V., “Fractal antennas. Fundamentally new type of “broken” antennas”, Elektron.: Nauka, Tekhnol., Biznes, 5 (2007), 78–83 (In Russian)

[15] Rani M., Haq R. U., Verma D. K., “Variants of Koch curve: A review”, Int. J. Comput. Appl., 2:4 (2012), 20–24

[16] Vinoy K. J., Abraham J. K., Varadan V. K., “Generalized design of multi-resonant dipole antennas using Koch curves”, ACES J., 19:1a (2004), 22–31

[17] Karim M. N. A., Rahim M. K. A., Majid H. A., Ayop O., Abu M., Zubir F., “Log periodic fractal Koch antenna for UHF band applications”, PIER, 100 (2010), 201–218 | DOI

[18] Banerjee P., Bezboruah T., “Theoretical study of radiation characteristics of short dipole antenna”, Lec. Notes Eng. Comput. Sci., 2210, no. 1, 2014, 785–790

[19] Surutka J. V., Velickivic D. M., “Symmetrical linear anntennas driven by two-wire lines”, Serb. J. Electr. Eng., 1:1 (2003), 27–60 | DOI

[20] Sijher T. S., Kishk A. A., “Antenna modeling by infinitesimal dipoles using genetic algorithms”, PIER, 52 (2005), 225–254 | DOI

[21] Gordeeva A. N., Tumakov D. N., “Diffraction of the electromagnetic wave on system of parallel metal screens”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 150, no. 1, 2008, 38–55 (In Russian) | Zbl

[22] Tumakov D. N., “Iterative method for solving the problem of scattering of an electromagnetic wave by a partially shielded conducting sphere”, Appl. Math. Sci., 8:118 (2014), 5887–5898 | DOI

[23] Kolda T. G., Lewis R. M., Torczon V., “Optimization by direct search: New perspectives on some classical and modern methods”, J. Soc. Ind. Appl. Math., 45:3 (2003), 385–482 | DOI | Zbl

[24] Rahmat-Samii Y., Michielssen E., Electromagnetic optimization by genetic algorithms, John Wiley Sons, New Jersey, 1999, 512 pp.

[25] Haupt R. L., Werner D. H., Genetic algorithms in electromagnetics, John Wiley Sons, New Jersey, 2007, 318 pp.

[26] Iliya S. Z., Rahman T. A., Abdulrahman Y. A., “Relationship for slots width, antenna directivity, and the 3dB HPBW of an RLSA antenna at 12.4GHz using regression analysis”, ARPN J. Eng. Appl. Sci., 9:7 (2014), 1107–1110

[27] Ansor M. Y., Idris S. S. H., “Regression analysis of resonant frequency over number of turn of normal mode helical antenna”, Proc. TENCON, v. 2, 2000, 228–231 | DOI

[28] Calla O. P., Singh A., Singh A. K., Kumar S., Kumar T., “Empirical relation for designing the meander line antenna”, Proc. Int. Conf. Microwave, 2008, 695–697 | DOI

[29] Sundarsingh E. F., Ramalingam V. S., Kanagasabai M., “Statistical analysis on the bandwidth of a dual frequency textile antenna”, IET Microwaves, Antennas Propag., 9:15 (2015), 1683–1690 | DOI

[30] Ghatak R., Poddar D. R., Mishra R. K., “A moment-method characterization of V-Koch fractal dipole antennas”, Int. J. Electron. Commun., 63:4 (2009), 279–286 | DOI | MR

[31] Das A. K., Gupta R. K., Pal M., Ghatak R., “Resonance characteristics of asymmetric fractal shaped dipole antennas”, IJECT, 6:1 (2015), 91–94

[32] Chiu C. H., Lin C. C., Huang C. Y., Lin T. K., “Compact dual-band dipole antenna with asymmetric arms for WLAN applications”, Int. J. Antennas Propag., 2014 (2014), Art. 195749, 3 pp. | DOI

[33] Su S. W., Chang F. S., “Wideband rod-dipole antenna with a modified feed for DTV signal reception”, PIER Lett., 12 (2009), 127–132 | DOI

[34] Khraisat Y. S. H., Hmood K. A., Al-Mofleh A., “Analysis of the radiation resistance and gain of full-wave dipole antenna for different feeding design”, J. Electromagn. Anal. Appl., 4 (2012), 235–242 | DOI

[35] Gmurman V. E., Probability Theory and Mathematical Statistics, Vyssh. Shk., Moscow, 2003, 479 pp. (In Russian)

[36] Sengupta K., Vinoy K. J., “A new measure of lacunarity for generalized fractals and its impact in the electromagnetic behavior of Koch dipole antennas”, Fractals, 14:4 (2006), 271–282 | DOI

[37] Rothammel K., Antennas, v. 1, Energiya, Moscow, 1967, 272 pp. (In Russian)

[38] Furse C. M., Gandhi O. P., Lazzi G., “Dipole antennas”, Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley, N.Y., 2007, 1–11 | DOI

[39] Carr J. J., Practical antenna handbook, McGraw-Hill, New Jersey, 2001, 625 pp.

[40] Dennison M., Fielding J., Radio communication handbook, RSGB, Abbey Court., 2011, 118 pp.