On the explicit scheme with variable time steps for solving the parabolic optimal control problem
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 3, pp. 376-387 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper deals with the optimal control problem, including the linear parabolic equation as a state problem. Pointwise constraints are imposed on the control function. The objective functional involves the observation function in the entire space-time domain. The optimal control problem is approximated by a finite dimensional problem with mesh approximation of the state equation by the explicit (forward Euler) mesh scheme with variable time steps. The existence of unique solutions for the continuous and mesh optimal control problems is proved. The Uzawa-type iterative method is used for solving the finite dimensional optimal control problem. The results of numerical experiments are presented.
Keywords: optimal control, constraint on control, variable step, iterative method.
@article{UZKU_2016_158_3_a4,
     author = {A. D. Romanenko},
     title = {On the explicit scheme with variable time steps for solving the parabolic optimal control problem},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {376--387},
     year = {2016},
     volume = {158},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2016_158_3_a4/}
}
TY  - JOUR
AU  - A. D. Romanenko
TI  - On the explicit scheme with variable time steps for solving the parabolic optimal control problem
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2016
SP  - 376
EP  - 387
VL  - 158
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2016_158_3_a4/
LA  - ru
ID  - UZKU_2016_158_3_a4
ER  - 
%0 Journal Article
%A A. D. Romanenko
%T On the explicit scheme with variable time steps for solving the parabolic optimal control problem
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2016
%P 376-387
%V 158
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2016_158_3_a4/
%G ru
%F UZKU_2016_158_3_a4
A. D. Romanenko. On the explicit scheme with variable time steps for solving the parabolic optimal control problem. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 3, pp. 376-387. http://geodesic.mathdoc.fr/item/UZKU_2016_158_3_a4/

[1] Deckelnick K., Hinze M., “Variational discretization of parabolic control problems in the presence of pointwise state constraints”, J. Comp. Math., 29:1 (2011), 1–15 | MR | Zbl

[2] Neittaanmaki P., Tiba D., Optimal control of nonlinear parabolic systems: theory, algorithms and applications, Marcell Dekker Inc., 1994, 424 pp. | MR | Zbl

[3] Laitinen E., Lapin A., Lapin S., “Explicit algorithms to solve a class of state constrained parabolic optimal control problems”, Russ. J. Numer. Anal. Math. Modeling, 30:6 (2015), 351–362 | MR | Zbl

[4] Laitinen E., Lapin A., “Iterative solution methods for parabolic optimal control problem with constraints on time derivative of state function”, WSEAS Recent Advances in Mathematics: Mathematics and Computers in Science and Engineering Series, 48 (2015), 72–74

[5] Lapin A. V., Platonov A. A., Romanenko A. D., “Solving a parabolic optimal control problem with state constraints by using explicit approximation of the state equation”, Mesh Methods for Boundary-Value Problems and Applications, Proc. 10th Int. Conf., Izd. Kazan. Univ., Kazan, 2014, 444–447 (In Russian)

[6] Badriev I. B., Karchevskii M. M., “Application of the duality method of the solution of nonlinear problems seepage theory with a limit gradient”, Diff. Uravn., 18:7 (1982), 1133–1144 (In Russian) | MR | Zbl

[7] Badriev I. B., “On the solving of variational inequalities of stationary problems of two-phase flow in porous media”, Appl. Mech. and Materials, 392 (2013), 183–187 | DOI

[8] Badriev I. B., Karchevskii M. M., “Convergence of the iterative Uzava method for the solution of the stationary problem of the seepage theory with a limit gradient”, J. Sov. Math., 45:4 (1989), 1302–1309 | DOI | MR

[9] Lebedev V. I., Finogenov S. A., “Ordering of the iterative parameters in the cyclical Chebyshev iterative method”, USSR Comput. Math. Math. Phys., 11:2 (1971), 155–170 | MR | Zbl

[10] Lebedev V. I., Medovikov A. A., “An explicit method of the second order of accuracy for solving stiff systems of ordinary differential equations”, Izv. Vyssh. Uchebn. Zaved., Mat., 1998, no. 9, 55–63 (In Russian) | MR | Zbl

[11] Quarteroni A., Valli A., Numerical approximation of partial differential equations, Springer, Berlin–Heidelberg, 1997, 560 pp. | MR

[12] Ekland I., Temam R., Convex Analysis and Variational Problems, Mir, Moscow, 1979, 399 pp. (In Russian) | MR

[13] Lapin A. V., “Preconditioned Uzawa type methods for finite-dimensional constrained saddle point problems”, Lobachevskii J. Math., 31:4 (2010), 309–322 | DOI | MR | Zbl

[14] Nikolaev E. S., Samarskii A. A., “Selection of the iterative parameters in Richardson's method”, USSR Comput. Math. Math. Phys., 12:4 (1972), 141–158 | DOI | MR | Zbl

[15] Lapin A. V., Platonov A. A., “Numerical solution of a parabolic optimal control problem with point-wise state constraints”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 158, no. 1, 2016, 81–90 (In Russian)