@article{UZKU_2016_158_3_a4,
author = {A. D. Romanenko},
title = {On the explicit scheme with variable time steps for solving the parabolic optimal control problem},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {376--387},
year = {2016},
volume = {158},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2016_158_3_a4/}
}
TY - JOUR AU - A. D. Romanenko TI - On the explicit scheme with variable time steps for solving the parabolic optimal control problem JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2016 SP - 376 EP - 387 VL - 158 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2016_158_3_a4/ LA - ru ID - UZKU_2016_158_3_a4 ER -
%0 Journal Article %A A. D. Romanenko %T On the explicit scheme with variable time steps for solving the parabolic optimal control problem %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2016 %P 376-387 %V 158 %N 3 %U http://geodesic.mathdoc.fr/item/UZKU_2016_158_3_a4/ %G ru %F UZKU_2016_158_3_a4
A. D. Romanenko. On the explicit scheme with variable time steps for solving the parabolic optimal control problem. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 3, pp. 376-387. http://geodesic.mathdoc.fr/item/UZKU_2016_158_3_a4/
[1] Deckelnick K., Hinze M., “Variational discretization of parabolic control problems in the presence of pointwise state constraints”, J. Comp. Math., 29:1 (2011), 1–15 | MR | Zbl
[2] Neittaanmaki P., Tiba D., Optimal control of nonlinear parabolic systems: theory, algorithms and applications, Marcell Dekker Inc., 1994, 424 pp. | MR | Zbl
[3] Laitinen E., Lapin A., Lapin S., “Explicit algorithms to solve a class of state constrained parabolic optimal control problems”, Russ. J. Numer. Anal. Math. Modeling, 30:6 (2015), 351–362 | MR | Zbl
[4] Laitinen E., Lapin A., “Iterative solution methods for parabolic optimal control problem with constraints on time derivative of state function”, WSEAS Recent Advances in Mathematics: Mathematics and Computers in Science and Engineering Series, 48 (2015), 72–74
[5] Lapin A. V., Platonov A. A., Romanenko A. D., “Solving a parabolic optimal control problem with state constraints by using explicit approximation of the state equation”, Mesh Methods for Boundary-Value Problems and Applications, Proc. 10th Int. Conf., Izd. Kazan. Univ., Kazan, 2014, 444–447 (In Russian)
[6] Badriev I. B., Karchevskii M. M., “Application of the duality method of the solution of nonlinear problems seepage theory with a limit gradient”, Diff. Uravn., 18:7 (1982), 1133–1144 (In Russian) | MR | Zbl
[7] Badriev I. B., “On the solving of variational inequalities of stationary problems of two-phase flow in porous media”, Appl. Mech. and Materials, 392 (2013), 183–187 | DOI
[8] Badriev I. B., Karchevskii M. M., “Convergence of the iterative Uzava method for the solution of the stationary problem of the seepage theory with a limit gradient”, J. Sov. Math., 45:4 (1989), 1302–1309 | DOI | MR
[9] Lebedev V. I., Finogenov S. A., “Ordering of the iterative parameters in the cyclical Chebyshev iterative method”, USSR Comput. Math. Math. Phys., 11:2 (1971), 155–170 | MR | Zbl
[10] Lebedev V. I., Medovikov A. A., “An explicit method of the second order of accuracy for solving stiff systems of ordinary differential equations”, Izv. Vyssh. Uchebn. Zaved., Mat., 1998, no. 9, 55–63 (In Russian) | MR | Zbl
[11] Quarteroni A., Valli A., Numerical approximation of partial differential equations, Springer, Berlin–Heidelberg, 1997, 560 pp. | MR
[12] Ekland I., Temam R., Convex Analysis and Variational Problems, Mir, Moscow, 1979, 399 pp. (In Russian) | MR
[13] Lapin A. V., “Preconditioned Uzawa type methods for finite-dimensional constrained saddle point problems”, Lobachevskii J. Math., 31:4 (2010), 309–322 | DOI | MR | Zbl
[14] Nikolaev E. S., Samarskii A. A., “Selection of the iterative parameters in Richardson's method”, USSR Comput. Math. Math. Phys., 12:4 (1972), 141–158 | DOI | MR | Zbl
[15] Lapin A. V., Platonov A. A., “Numerical solution of a parabolic optimal control problem with point-wise state constraints”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 158, no. 1, 2016, 81–90 (In Russian)