On non-classical buckling mode and failure of composite laminated specimens under the three-point bending
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 3, pp. 350-375 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

On the basis of linearized equations of the theory of curvilinear bars, the buckling problem of rectilinear short and long laminated fiber reinforced specimens under the three-point bending conditions has been formulated. Using the method of finite sums in the variant of integrating matrices, a numerical method for solving the above problem has been developed. It has been shown that the failure of the composite specimens under the three-point bending conditions occurs due to the implementation of non-classical shear buckling mode.
Keywords: layered composite, specimen, three-point bending problem, finite sum method, mechanical test simulation, shear buckling mode.
@article{UZKU_2016_158_3_a3,
     author = {V. N. Paimushin and D. V. Tarlakovskii and S. A. Kholmogorov},
     title = {On non-classical buckling mode and failure of composite laminated specimens under the three-point bending},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {350--375},
     year = {2016},
     volume = {158},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2016_158_3_a3/}
}
TY  - JOUR
AU  - V. N. Paimushin
AU  - D. V. Tarlakovskii
AU  - S. A. Kholmogorov
TI  - On non-classical buckling mode and failure of composite laminated specimens under the three-point bending
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2016
SP  - 350
EP  - 375
VL  - 158
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2016_158_3_a3/
LA  - ru
ID  - UZKU_2016_158_3_a3
ER  - 
%0 Journal Article
%A V. N. Paimushin
%A D. V. Tarlakovskii
%A S. A. Kholmogorov
%T On non-classical buckling mode and failure of composite laminated specimens under the three-point bending
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2016
%P 350-375
%V 158
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2016_158_3_a3/
%G ru
%F UZKU_2016_158_3_a3
V. N. Paimushin; D. V. Tarlakovskii; S. A. Kholmogorov. On non-classical buckling mode and failure of composite laminated specimens under the three-point bending. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 3, pp. 350-375. http://geodesic.mathdoc.fr/item/UZKU_2016_158_3_a3/

[1] Paimushin V. N., Shalashilin V. I., “Consistent variant of continuum deformation theory in the quadratic approximation”, Dokl. Phys., 49:6 (2004), 374–377 | DOI | MR

[2] Paimushin V. N., Shalashilin V. I., “Geometrically non-linear equations in the theory of momentless shells with applications to problems on the non-classical forms of loss of stability of a cylinder”, J. Appl. Math. Mech., 70:1 (2006), 91–101 | DOI | MR

[3] Paimushin V. N., “Torsional, flexural, and torsional-flexural buckling modes of a cylindrical shell under combined loading”, Mech. Solids, 42:3 (2007), 437–446 | DOI

[4] Paimushin V. N., “Problems of geometric non-linearity and stability in the mechanics of thin shells and rectilinear columns”, J. Appl. Math. Mech., 71:5 (2007), 772–805 | DOI | MR

[5] Paimushin V. N., Polyakova N. V., “The consistent equations of the theory of plane curvilinear rods for finite displacements and linearized problems of stability”, J. Appl. Math. Mech., 73:2 (2009), 220–236 | DOI | MR

[6] Paimushin V. N., Polyakova N. V., “The stability of a ring under the action of a linear torque, constant along the perimeter”, J. Appl. Math. Mech., 75:6 (2011), 691–699 | DOI | MR

[7] Polymeric composition materials. Method for determining strength while shifting during bending test, Industrial Standard 1-90199-75, Moscow, 1975 (In Russian)

[8] Calculations and tests for strength in machine engineering. Composition materials. Methods of tests for interlaminar shear, Ruling Document 50-675-88, Moscow, 1989, 10 pp. (In Russian)

[9] Standard Test Method for In-Plane Shear Response of Polymer Matrix Composite Materials by Tensile Test of a $\pm45^\circ$ Laminate, ASTM D3518 / D3518M-13, ASTM Int., West Conshohocken, PA, 2013

[10] Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, ASTM D790-15e2, ASTM Int., West Conshohocken, PA, 2015

[11] Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates, ASTM D2344 / D2344M-16, ASTM Int., West Conshohocken, PA, 2016

[12] Polymer composites. Test methods. Determination of apparent interlaminar shear strength by short-beam method, State Standard 32659-2014, Standartinform, Moscow, 2014, 19 pp. (In Russian)

[13] Kayumov R. A., Lukankin S. A., Paimushin V. N., Kholmogorov S. A., “Identification of mechanical properties of fiber-reinforced composites”, Uchenye Zapiski Kazanskogo Universiteta. Fiziko-Matematicheskie Nauki, 157, no. 4, 2015, 112–132 (In Russian) | MR

[14] Alfutov N. A., Zinov'ev P. A., Popov B. G., Design of Multilayered Plates and Shells of Composite Materials, Mashinostroenie, Moscow, 1984, 263 pp. (In Russian)

[15] Dautov R. Z., Paimushin V. N., “On the method of integrating matrices in solving boundary-value problems for ordinary differential equations of the fourth order”, Izv. VUZov, Mat., 1996, no. 10, 13–25 (In Russian) | MR | Zbl