Voir la notice du chapitre de livre
@article{UZKU_2016_158_3_a2,
author = {I. V. Korytov},
title = {Clarkson's inequalities for periodic {Sobolev} space},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {336--349},
year = {2016},
volume = {158},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2016_158_3_a2/}
}
TY - JOUR AU - I. V. Korytov TI - Clarkson's inequalities for periodic Sobolev space JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2016 SP - 336 EP - 349 VL - 158 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2016_158_3_a2/ LA - ru ID - UZKU_2016_158_3_a2 ER -
I. V. Korytov. Clarkson's inequalities for periodic Sobolev space. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 3, pp. 336-349. http://geodesic.mathdoc.fr/item/UZKU_2016_158_3_a2/
[1] Sobolev S. L., Introduction to the Theory of Cubature Formulas, Nauka, Moscow, 1974, 808 pp. (In Russian) | MR
[2] Clarkson J. A., “Uniformly convex spaces”, Trans. Am. Math. Soc., 40:3 (1936), 396–414 | DOI | MR | Zbl
[3] Sobolev S. L., Some Applications of Functional Analysis in Mathematical Physics, Nauka, Moscow, 1988, 336 pp. (In Russian)
[4] Hanner O., “On the uniform convexity of $L_p$ and $l_p$”, Ark. Mat., 3:3 (1956), 239–244 | DOI | MR | Zbl
[5] Enflo P., “Banach spaces which can be given an equivalent uniformly convex norm”, Isr. J. Math., 13:3 (1972), 281–288 | DOI | MR
[6] Deville R., Godefroy G., Zizler V., Smoothness and Renormings in Banach Spaces, Longman, Harlow, 1993, 376 pp. | MR | Zbl
[7] Portnov V. R., “Sobolev projection operators for seminorms with infinite-dimensional kernels”, Proc. Steklov Inst. Math., 140 (1979), 277–288 | MR | Zbl
[8] Portnov V. R., “On some integral inequalities”, Embedding Theorems and Their Applications, Moscow, 1970, 195–203 (In Russian) | MR
[9] Portnov V. R., “On a certain projection operator of Sobolev type”, Dokl. Akad. Nauk SSSR, 189:2 (1969), 258–260 (In Russian) | Zbl
[10] Agranovich M. S., Sobolev Spaces, Their Generalizations and Elliptic Problems in Domains with Smooth and Lipschitz Boundary, Izd. MTsNMO, Moscow, 2013, 379 pp. (In Russian)
[11] Maz'ya V. G., Sobolev Spaces, Izd. Leningr. Univ., Leningrad, 1985, 416 pp. (In Russian)
[12] Shoynzhurov Ts. B., The theory of cubature formulas in function spaces with the norm depending on the function and its derivatives, Doct. Phys.-Math. Sci. Diss., Ulan Ude, 1977, 235 pp. (In Russian)
[13] Shoynzhurov Ts. B., Estimation of Norm of Cubature Formula Error Functional in Various Functional Spaces, Izd. Buryat. Nauchn. Tsentr Sib. Otd. Ross. Akad. Nauk, Ulan Ude, 2005, 247 pp. (In Russian)
[14] Shoynzhurov Ts. B., Cubature Formulas in Sobolev Space $W_p^m$, Izd. VSGTU, Ulan Ude, 2002, 201 pp. (In Russian)
[15] Korytov I. V., “Function representing error functional of a cubature formula in Sobolev space”, Byull. Tomsk. Polytekh. Univ., 323:2 (2013), 21–25 (In Russian)
[16] Korytov I. V., “The extreme function of a linear functional at the weighted Sobolev space”, Vestn. Tomsk. Gos. Univ., Mat. Mekh., 2011, no. 2(14), 5–15 (In Russian)
[17] Korytov I. V., “Representation of error functional of cubature formula at weighted Sobolev space”, Vychisl. Tekhnol., 11, Spec. issue (2006), 59–66 (In Russian) | Zbl
[18] Sobolev S. L., Vaskevich V. L., Cubature Formulas, Izd. Inst. Mat., Novosibirsk, 1996, 483 pp. (In Russian)
[19] Vaskevich V. L., “Errors, condition numbers, and guaranteed accuracy of higher-dimensional spherical cubatures”, Sib. Math. J., 53:6 (2012), 996–1010 | DOI | MR | Zbl
[20] Mbarki A., Ouahab A., Hadi I. E., “Convexity and fixed point properties in spaces of Bochner integrals nuclear-valued functions”, Appl. Math. Sci., 8:84 (2014), 4179–4186 | DOI
[21] Mizuguchi H., Saito K. S., “A note on Clarkson's inequality in the real case”, J. Math. Inequalities, 4:1 (2010), 29–132 | MR
[22] Formisano T., Kissin E., “Clarkson–McCarthy inequalities for $l_p$-spaces of operators in Schatten ideals”, Integr. Equations Oper. Theory, 79:2 (2014), 151–173 | DOI | MR | Zbl