Mixed finite element method for nonclassical boundary value problems of shallow shell theory
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 3, pp. 322-335 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The necessary and sufficient conditions for the solvability of the variational problems of the geometrically and physically nonlinear shallow shell theory by nonclassical boundary conditions modeling the rigid contact of the shell boundary or the normal load in the tangent plane on the shell boundary are obtained. The mixed finite element schemes for approximate solving of these problems are constructed. The solvability conditions for the corresponding discrete problems are deduced. The convergence of the approximate solutions by refinement of the domain triangulation is proved.
Keywords: shallow shell, variational problem, solvability conditions, mixed finite element method, convergence of approximate solutions.
@article{UZKU_2016_158_3_a1,
     author = {M. M. Karchevsky},
     title = {Mixed finite element method for nonclassical boundary value problems of shallow shell theory},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {322--335},
     year = {2016},
     volume = {158},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2016_158_3_a1/}
}
TY  - JOUR
AU  - M. M. Karchevsky
TI  - Mixed finite element method for nonclassical boundary value problems of shallow shell theory
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2016
SP  - 322
EP  - 335
VL  - 158
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2016_158_3_a1/
LA  - ru
ID  - UZKU_2016_158_3_a1
ER  - 
%0 Journal Article
%A M. M. Karchevsky
%T Mixed finite element method for nonclassical boundary value problems of shallow shell theory
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2016
%P 322-335
%V 158
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2016_158_3_a1/
%G ru
%F UZKU_2016_158_3_a1
M. M. Karchevsky. Mixed finite element method for nonclassical boundary value problems of shallow shell theory. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 3, pp. 322-335. http://geodesic.mathdoc.fr/item/UZKU_2016_158_3_a1/

[1] Eidus D. M., “On the mixed problem of the theory of elasticity”, Dokl. Akad. Nauk SSSR, 76:2 (1951), 181–184 (In Russian)

[2] Mikhlin S. G., The Minimum Problem for a Quadratic Functional, Gostekhizdat, Moscow, 1952, 216 pp. (In Russian) | MR

[3] Dubinskii Yu. A., “Some coercive problems for the system of Poisson equations”, Russ. J. Math. Phys., 20:4 (2013), 402–412 | DOI | MR | Zbl

[4] Dubinskii Yu. A., “On some boundary value problems for a system of Poisson equations in a three-dimensional domain”, Differ. Equations, 49:5 (2013), 583–587 | Zbl

[5] Karchevsky M. M., Shagidullin R. R., “On boundary value problems for elliptic systems of second-order equations in divergence form”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 157, no. 2, 2015, 93–103 (In Russian)

[6] Karchevsky M. M., “Solvability of variational problems of the nonlinear theory of shallow shells”, Differ. Uravn., 27:7 (1991), 1996–1203 (In Russian) | MR | Zbl

[7] Astrakhantsev G. N., “On a mixed finite-element method in problems of shell theory”, USSR Comput. Math. Math. Phys., 29:5 (1989), 167–176 | MR | Zbl

[8] Karchevsky M. M., “A mixed finite element method for nonlinear problems in the theory of plates”, Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 7, 12–19 (In Russian) | MR | Zbl

[9] Karchevsky M. M., Zabotina L. Sh., “On some class of mixed finite element schemes for nonlinear shell theory problems”, Mat. Zametki YaGU, 2:2 (1995), 121–139

[10] Zabotina L. Sh., Karchevsky M. M., “On mixed finite element schemes for nonlinear problems in the theory of shells”, Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 1, 44–50 (In Russian) | MR | Zbl

[11] Vorovich I. I., Mathematical Problems of Nonlinear Theory of Shallow Shells, Nauka, Moscow, 1989, 376 pp. (In Russian) | MR

[12] Berdichevskii V. L., Variational Principles in Continuum Mechanics, Nauka, Moscow, 1983, 447 pp. (In Russian) | MR

[13] Kondrat'ev V. A., Oleinik O. A., “Boundary value problems for partial differential equations in nonsmooth domains. Korn inequalities”, Usp. Mat. Nauk, 43:5 (1988), 55–98 (In Russian) | MR | Zbl

[14] Gilbarg D., Trudinger N., Elliptic Partial Differential Equations of Second Order, Nauka, Moscow, 1989, 464 pp. (In Russian) | MR

[15] Ladyzhenskaya O. A., Ural'tseva N. N., Linear and Quasilinear Elliptic Equation, Nauka, Moscow, 1973, 576 pp. (In Russian)

[16] Ciarlet P., Finite Element Method for Elliptic Problems, Mir, Moscow, 1980, 512 pp. (In Russian)

[17] Vainberg M. M., Variational Method and Method of Monotone Operators in the Theory of Nonlinear Equations, Nauka, Moscow, 1972, 415 pp. (In Russian) | MR

[18] Rannacher R., Scott R., “Some optimal error estimates for piecewise linear finite element approximations”, Math. Comput., 38:158 (1982), 437–445 | DOI | MR | Zbl

[19] Dautov R. Z., Karchevsky M. M., Introduction to the Theory of Finite Element Method, Kazan. Univ., Kazan, 2011, 237 pp. (In Russian)