@article{UZKU_2016_158_3_a1,
author = {M. M. Karchevsky},
title = {Mixed finite element method for nonclassical boundary value problems of shallow shell theory},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {322--335},
year = {2016},
volume = {158},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2016_158_3_a1/}
}
TY - JOUR AU - M. M. Karchevsky TI - Mixed finite element method for nonclassical boundary value problems of shallow shell theory JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2016 SP - 322 EP - 335 VL - 158 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2016_158_3_a1/ LA - ru ID - UZKU_2016_158_3_a1 ER -
%0 Journal Article %A M. M. Karchevsky %T Mixed finite element method for nonclassical boundary value problems of shallow shell theory %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2016 %P 322-335 %V 158 %N 3 %U http://geodesic.mathdoc.fr/item/UZKU_2016_158_3_a1/ %G ru %F UZKU_2016_158_3_a1
M. M. Karchevsky. Mixed finite element method for nonclassical boundary value problems of shallow shell theory. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 3, pp. 322-335. http://geodesic.mathdoc.fr/item/UZKU_2016_158_3_a1/
[1] Eidus D. M., “On the mixed problem of the theory of elasticity”, Dokl. Akad. Nauk SSSR, 76:2 (1951), 181–184 (In Russian)
[2] Mikhlin S. G., The Minimum Problem for a Quadratic Functional, Gostekhizdat, Moscow, 1952, 216 pp. (In Russian) | MR
[3] Dubinskii Yu. A., “Some coercive problems for the system of Poisson equations”, Russ. J. Math. Phys., 20:4 (2013), 402–412 | DOI | MR | Zbl
[4] Dubinskii Yu. A., “On some boundary value problems for a system of Poisson equations in a three-dimensional domain”, Differ. Equations, 49:5 (2013), 583–587 | Zbl
[5] Karchevsky M. M., Shagidullin R. R., “On boundary value problems for elliptic systems of second-order equations in divergence form”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 157, no. 2, 2015, 93–103 (In Russian)
[6] Karchevsky M. M., “Solvability of variational problems of the nonlinear theory of shallow shells”, Differ. Uravn., 27:7 (1991), 1996–1203 (In Russian) | MR | Zbl
[7] Astrakhantsev G. N., “On a mixed finite-element method in problems of shell theory”, USSR Comput. Math. Math. Phys., 29:5 (1989), 167–176 | MR | Zbl
[8] Karchevsky M. M., “A mixed finite element method for nonlinear problems in the theory of plates”, Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 7, 12–19 (In Russian) | MR | Zbl
[9] Karchevsky M. M., Zabotina L. Sh., “On some class of mixed finite element schemes for nonlinear shell theory problems”, Mat. Zametki YaGU, 2:2 (1995), 121–139
[10] Zabotina L. Sh., Karchevsky M. M., “On mixed finite element schemes for nonlinear problems in the theory of shells”, Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 1, 44–50 (In Russian) | MR | Zbl
[11] Vorovich I. I., Mathematical Problems of Nonlinear Theory of Shallow Shells, Nauka, Moscow, 1989, 376 pp. (In Russian) | MR
[12] Berdichevskii V. L., Variational Principles in Continuum Mechanics, Nauka, Moscow, 1983, 447 pp. (In Russian) | MR
[13] Kondrat'ev V. A., Oleinik O. A., “Boundary value problems for partial differential equations in nonsmooth domains. Korn inequalities”, Usp. Mat. Nauk, 43:5 (1988), 55–98 (In Russian) | MR | Zbl
[14] Gilbarg D., Trudinger N., Elliptic Partial Differential Equations of Second Order, Nauka, Moscow, 1989, 464 pp. (In Russian) | MR
[15] Ladyzhenskaya O. A., Ural'tseva N. N., Linear and Quasilinear Elliptic Equation, Nauka, Moscow, 1973, 576 pp. (In Russian)
[16] Ciarlet P., Finite Element Method for Elliptic Problems, Mir, Moscow, 1980, 512 pp. (In Russian)
[17] Vainberg M. M., Variational Method and Method of Monotone Operators in the Theory of Nonlinear Equations, Nauka, Moscow, 1972, 415 pp. (In Russian) | MR
[18] Rannacher R., Scott R., “Some optimal error estimates for piecewise linear finite element approximations”, Math. Comput., 38:158 (1982), 437–445 | DOI | MR | Zbl
[19] Dautov R. Z., Karchevsky M. M., Introduction to the Theory of Finite Element Method, Kazan. Univ., Kazan, 2011, 237 pp. (In Russian)