@article{UZKU_2016_158_2_a9,
author = {V. D. Slabnov and R. A. Sultanov},
title = {Numerical simulation of high viscosity oil displacement by water following non-linear filtration law},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {276--286},
year = {2016},
volume = {158},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a9/}
}
TY - JOUR AU - V. D. Slabnov AU - R. A. Sultanov TI - Numerical simulation of high viscosity oil displacement by water following non-linear filtration law JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2016 SP - 276 EP - 286 VL - 158 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a9/ LA - ru ID - UZKU_2016_158_2_a9 ER -
%0 Journal Article %A V. D. Slabnov %A R. A. Sultanov %T Numerical simulation of high viscosity oil displacement by water following non-linear filtration law %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2016 %P 276-286 %V 158 %N 2 %U http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a9/ %G ru %F UZKU_2016_158_2_a9
V. D. Slabnov; R. A. Sultanov. Numerical simulation of high viscosity oil displacement by water following non-linear filtration law. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 2, pp. 276-286. http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a9/
[1] Khristianovich S. A., “The motion of ground waters not obeying Darcy's law”, Prikl. Mat. Mekh., 4:1 (1940), 33–52 (In Russian)
[2] Bernadiner M. G., Entov V. M., “Displacement of immiscible liquids in nonlinear filtration”, Prikl. Mekh. Tekh. Fiz., 1968, no. 3, 15–17 (In Russian)
[3] Maksimov V. M., Dmitriev N. M., Mamedov M. T., “Nonlinear filtration laws with a limiting gradient”, Gazov. Prom-st, 2009, no. 11, 38–40 (In Russian)
[4] Dmitriev N. M., Maksimov V. M., Mamedov M. T., “Laws of flow with a limiting gradient in anisotropic porous media”, Fluid Dyn., 45:2 (2010), 223–229 | DOI | MR | Zbl
[5] Khalimov E. M., Levi B. I., Dzyuba V. I., Ponomarev C. A., A Technology of Enhanced Oil Recovery, Nedra, Moscow, 1984, 271 pp. (In Russian)
[6] Levi B. I., Sankin V. M., “Numerical solutions of three-dimensional problems for two-phase nonisothermic filtration of Newtonian and non-Newtonian liquids”, Chislennye Metody Mekh. Sploshnoi Sredy, 5, Sib. Otd. Akad. Nauk SSSR, Novosibirsk, 1977, 115–119 (In Russian)
[7] Aziz Kh., Settari E., Mathematical Modeling of Seam Systems, Nedra, Moscow, 1982, 407 pp. (In Russian)
[8] Barenblatt G. I., Entov V. M., Ryzhik V. M., Motion of Liquids and Gases in Porous Strata, Nedra, Moscow, 1984, 211 pp. (In Russian)
[9] Badriev I. B., Zadvornov O. A., Ismagilov L. N., Skvortsov E. V., “Solving flat filtration problems following the multivalued filtration law and in the presence of a point source”, Prikl. Mat. Mekh., 73:4 (2009), 604–614 | MR
[10] Rozenberg M. D., Kundin S. A., Multiphase Multicomponent Filtration, Nedra, Moscow, 1976, 312 pp. (In Russian)
[11] Volkov Yu. A., Slabnov V. D., “On the methods of hydrodynamical calculation of the development process in the system of wells”, Mathematical Modelling of Filtration and Optimization Processes during Oil Extraction, Kazan, 1989, 5–12 (In Russian)
[12] Slabnov V. D., Sultanov R. A., “On the problem of controlling the current oil recovery in the stratified layer”, Problems of Mathematical Modelling of Filtration Processes and Rational Development of Oil Fields, Kazan, 1989, 44–48 (In Russian)
[13] Sultanov R. A., “A new approach to construction of fictive phase permeabilities under the conditions of two-phase filtration”, Optimization of Oil Extraction and Problems of Subsurface Hydromechanics, Kazan, 1987, 106–109 (In Russian)