Numerical simulation of high viscosity oil displacement by water following non-linear filtration law
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 2, pp. 276-286 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The non-linear filtration law with a limiting gradient of two immiscible fluids (oil and water) into a flat warp-free layer exploited by horizontal and vertical wells is investigated. The method for numerical determination of pressure and oil saturation and the corresponding difference analogues are considered. The analysis of high viscosity oil displacement by water in the five-point waterflooding element for three types of heterogeneity (zonal, with spline-interpolation application, and laminated) is carried out. The influence of the displacement limiting gradient on the basic technological characteristics of non-Newtonian oil production is studied. The results of the mathematical simulation show that the front movement at the initial stage of displacement is close to circular. The movement of non-Newtonian oil after the displacing fluid breakthrough into the producing well occurs mainly in a narrow area close to the straight current line connecting the producing and pressure wells. The dynamics of the current oil recovery coefficient depends on the properties of the displaced fluid, absolute permeability distribution in the filtration area, and set of limitations to exploitation of the operating producing and pressure wells.
Keywords: two-phase filtration, numerical simulation, non-linear filtration law, limiting gradient, five-point waterflooding element, laminated layer.
@article{UZKU_2016_158_2_a9,
     author = {V. D. Slabnov and R. A. Sultanov},
     title = {Numerical simulation of high viscosity oil displacement by water following non-linear filtration law},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {276--286},
     year = {2016},
     volume = {158},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a9/}
}
TY  - JOUR
AU  - V. D. Slabnov
AU  - R. A. Sultanov
TI  - Numerical simulation of high viscosity oil displacement by water following non-linear filtration law
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2016
SP  - 276
EP  - 286
VL  - 158
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a9/
LA  - ru
ID  - UZKU_2016_158_2_a9
ER  - 
%0 Journal Article
%A V. D. Slabnov
%A R. A. Sultanov
%T Numerical simulation of high viscosity oil displacement by water following non-linear filtration law
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2016
%P 276-286
%V 158
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a9/
%G ru
%F UZKU_2016_158_2_a9
V. D. Slabnov; R. A. Sultanov. Numerical simulation of high viscosity oil displacement by water following non-linear filtration law. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 2, pp. 276-286. http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a9/

[1] Khristianovich S. A., “The motion of ground waters not obeying Darcy's law”, Prikl. Mat. Mekh., 4:1 (1940), 33–52 (In Russian)

[2] Bernadiner M. G., Entov V. M., “Displacement of immiscible liquids in nonlinear filtration”, Prikl. Mekh. Tekh. Fiz., 1968, no. 3, 15–17 (In Russian)

[3] Maksimov V. M., Dmitriev N. M., Mamedov M. T., “Nonlinear filtration laws with a limiting gradient”, Gazov. Prom-st, 2009, no. 11, 38–40 (In Russian)

[4] Dmitriev N. M., Maksimov V. M., Mamedov M. T., “Laws of flow with a limiting gradient in anisotropic porous media”, Fluid Dyn., 45:2 (2010), 223–229 | DOI | MR | Zbl

[5] Khalimov E. M., Levi B. I., Dzyuba V. I., Ponomarev C. A., A Technology of Enhanced Oil Recovery, Nedra, Moscow, 1984, 271 pp. (In Russian)

[6] Levi B. I., Sankin V. M., “Numerical solutions of three-dimensional problems for two-phase nonisothermic filtration of Newtonian and non-Newtonian liquids”, Chislennye Metody Mekh. Sploshnoi Sredy, 5, Sib. Otd. Akad. Nauk SSSR, Novosibirsk, 1977, 115–119 (In Russian)

[7] Aziz Kh., Settari E., Mathematical Modeling of Seam Systems, Nedra, Moscow, 1982, 407 pp. (In Russian)

[8] Barenblatt G. I., Entov V. M., Ryzhik V. M., Motion of Liquids and Gases in Porous Strata, Nedra, Moscow, 1984, 211 pp. (In Russian)

[9] Badriev I. B., Zadvornov O. A., Ismagilov L. N., Skvortsov E. V., “Solving flat filtration problems following the multivalued filtration law and in the presence of a point source”, Prikl. Mat. Mekh., 73:4 (2009), 604–614 | MR

[10] Rozenberg M. D., Kundin S. A., Multiphase Multicomponent Filtration, Nedra, Moscow, 1976, 312 pp. (In Russian)

[11] Volkov Yu. A., Slabnov V. D., “On the methods of hydrodynamical calculation of the development process in the system of wells”, Mathematical Modelling of Filtration and Optimization Processes during Oil Extraction, Kazan, 1989, 5–12 (In Russian)

[12] Slabnov V. D., Sultanov R. A., “On the problem of controlling the current oil recovery in the stratified layer”, Problems of Mathematical Modelling of Filtration Processes and Rational Development of Oil Fields, Kazan, 1989, 44–48 (In Russian)

[13] Sultanov R. A., “A new approach to construction of fictive phase permeabilities under the conditions of two-phase filtration”, Optimization of Oil Extraction and Problems of Subsurface Hydromechanics, Kazan, 1987, 106–109 (In Russian)