The filtration consolidation of an elastic porous medium with discontinuous initial conditions
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 2, pp. 262-275 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of finding the initial conditions of consolidation for an elastic medium is solved in a general way; the Laplace equation is obtained for the water pressure. The problem of filtration consolidation for an infinite porous tube with circular symmetry is solved taking into account the found initial conditions: a solution for the pressure is described by the diffusion equation. If there is no “hole” at the origin of coordinates, then the water pressure becomes infinitely large.
Keywords: theory of filtration consolidation, elastic porous medium, load, pressure.
Mots-clés : initial conditions
@article{UZKU_2016_158_2_a8,
     author = {F. M. Kadyrov and A. V. Kosterin},
     title = {The filtration consolidation of an elastic porous medium with discontinuous initial conditions},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {262--275},
     year = {2016},
     volume = {158},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a8/}
}
TY  - JOUR
AU  - F. M. Kadyrov
AU  - A. V. Kosterin
TI  - The filtration consolidation of an elastic porous medium with discontinuous initial conditions
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2016
SP  - 262
EP  - 275
VL  - 158
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a8/
LA  - ru
ID  - UZKU_2016_158_2_a8
ER  - 
%0 Journal Article
%A F. M. Kadyrov
%A A. V. Kosterin
%T The filtration consolidation of an elastic porous medium with discontinuous initial conditions
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2016
%P 262-275
%V 158
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a8/
%G ru
%F UZKU_2016_158_2_a8
F. M. Kadyrov; A. V. Kosterin. The filtration consolidation of an elastic porous medium with discontinuous initial conditions. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 2, pp. 262-275. http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a8/

[1] Tertsagi K., Theory of Soil Mechanics, Gosstroiizdat, Moscow, 1961, 544 pp. (In Russian)

[2] Gersevanov N. M., Collected Works, 2 Vols, Stroivoenmorizdat, Moscow, 1948 (In Russian)

[3] Florin V. A., Fundamentals of Soil Mechanics, 2 Vols, Gosstroiizdat, Moscow, 1959–1961 (In Russian)

[4] Bio M. A., “General solutions of the equations of elasticity and consolidation for a porous materials”, J. Appl. Mech., 23:1 (1956), 91–96 | MR | Zbl

[5] Nikolaevskii V. N., Basniev K. S., Gorbunov A. T., Mechanics of Saturated Porous Media, Nedra, Moscow, 1970, 339 pp. (In Russian)

[6] Nikolaevskii V. N., Mechanics of Porous and Cracked Media, Nedra, Moscow, 1984, 232 pp. (In Russian)

[7] Bear J., Corapcioglu M. Y., Fundamentals of transport phenomena in porous media, Martinus Nijhoff Publ., Dordrecht, 1984, 1003 pp.

[8] Coussy O., Mechanics and physics of porous solids, John Wiley and Sons, London, 2010, 300 pp.

[9] Shiffman R. L., “A bibliography of consolidation”, Fundamentals of transport phenomena in porous media, eds. Bear J., Corapcioglu M. Y., Martinus Nijhoff Publ., Dordrecht, 1984, 617–669 | DOI

[10] Rice James R., Cleary Michael P., “Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents”, Rev. Geophys. Space Phys., 14:2 (1976), 227–441 | DOI

[11] Selvadurai A. P. S., “The analytical method in geomechanics”, Appl. Mech. Rev., 60 (2007), 87–106 | DOI

[12] Kosterin A. V., “New models and generalized solutions of nonlinear problems in mechanics of saturated porous media”, Mat. Model., 13:2 (2001), 71–77 (In Russian) | MR | Zbl

[13] Ablaev F. M., Avkhadiev F. G., Alimov M. M., et al., At the Turn of the Century, N. G. Chebotarev's Institute of Mathematics and Mechanics. Kazan State University. 1998–2002, Izd. Kazan. Mat. O-va, Kazan, 2003, 600 pp. (In Russian) | MR

[14] Egorov A. G., Kosterin A. V., Skvortsov E. V., Consolidation and Acoustic Waves in Saturated Porous Media, Izd. Kazan. Univ., Kazan, 1990, 105 pp. (In Russian)

[15] Tsytovich N. A., Mechanics of Grounds, Vyssh. Shk., Moscow, 1983, 287 pp. (In Russian)

[16] Barenblatt G. I., Entov V. M., Ryzhik V. M., Theory of Unsteady Filtration of Fluids and Gases, Nedra, Moscow, 1972, 288 pp. (In Russian)

[17] Sommerfeld A., Mechanics of Deformable Media, Izd. Inostr. Lit., Moscow, 1954, 487 pp. (In Russian)

[18] Vilke V. G., Theoretical Mechanics, Lan', St. Petersburg, 2003, 304 pp. (In Russian)

[19] Gurov K. P., Phenomenological Thermodynamics of Irreversible Processes (Physical Foundations), Nauka, Moscow, 1978, 128 pp. (In Russian)

[20] Novatskii V., Theory of Elasticity, Mir, Moscow, 1975, 875 pp. (In Russian) | MR

[21] Lavrent'ev M. A., Shabat B. V., Methods of the Theory of Complex Variable Functions, Nauka, Moscow, 1987, 688 pp. (In Russian) | MR

[22] Johnson K., Contact Mechanics, Mir, Moscow, 1989, 510 pp. (In Russian)

[23] Dvait G. B., Tables of Integrals and Other Mathematical Formulas, Nauka, Moscow, 1966, 228 pp. (In Russian)

[24] Kadyrov F. M., “A plane Consolidation Problem with Discontinuous Initial Conditions”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 155, no. 3, 2013, 63–70 (In Russian) | MR

[25] Rendulic L., “Der hydrodynamische Spannungsausgleich in zentral entwasserten Tonzylindern”, Wasserwirtsch. Tech., 2 (1935), 250–253, 269–273

[26] Barron R. A., “Consolidation of fine-grained soils by drain wells”, Trans. ASCE, 113:1 (1948), 718–742

[27] Polyanin A. D., Vyaz'min A. V., Handbook of Exact Solutions to Heat and Mass Transfer Equations, Faktorial, Moscow, 1998, 368 pp. (In Russian)

[28] Kadyrov F. M., Kosterina E. A., “Numerical solution of the two-dimensional nonstationary problem of filtrational consolidation”, Mesh methods for Boundary Value Problems and Applications, Proc. 10th Int. Sci. Conf., Kazan. Univ., Kazan, 2014, 347–351 (In Russian)