Keywords: heterogeneous porous media, finite element method, numerical stabilization, classic Galerkin method, discontinuous Galerkin method.
@article{UZKU_2016_158_2_a7,
author = {M. V. Vasilyeva and V. I. Vasilyev and T. S. Timofeeva},
title = {Numerical solution of the convective and diffusive transport problems in a~heterogeneous porous medium using finite element method},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {243--261},
year = {2016},
volume = {158},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a7/}
}
TY - JOUR AU - M. V. Vasilyeva AU - V. I. Vasilyev AU - T. S. Timofeeva TI - Numerical solution of the convective and diffusive transport problems in a heterogeneous porous medium using finite element method JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2016 SP - 243 EP - 261 VL - 158 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a7/ LA - ru ID - UZKU_2016_158_2_a7 ER -
%0 Journal Article %A M. V. Vasilyeva %A V. I. Vasilyev %A T. S. Timofeeva %T Numerical solution of the convective and diffusive transport problems in a heterogeneous porous medium using finite element method %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2016 %P 243-261 %V 158 %N 2 %U http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a7/ %G ru %F UZKU_2016_158_2_a7
M. V. Vasilyeva; V. I. Vasilyev; T. S. Timofeeva. Numerical solution of the convective and diffusive transport problems in a heterogeneous porous medium using finite element method. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 2, pp. 243-261. http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a7/
[1] Aziz K., Settari A., Petroleum Reservoir Simulation, Appl. Sci. Publ. Ltd., London, 1979, 497 pp.
[2] Bear J., Dynamics of Fluids in Porous Media, Dover Publ., Inc., N.Y., 1972, 764 pp.
[3] Chen Z., Huan G., Ma Y., Computational Methods for Multiphase Flows in Porous Media, SIAM, 2006, 561 pp. | MR | Zbl
[4] Vabishchevich P. N., Vasil'eva M., “Iterative solution of the pressure problem for the multi-phase filtration”, Math. Model. Anal., 17:4 (2012), 532–549 | DOI | MR
[5] Christie M. A., Blunt M. J., “Tenth SPE comparative solution project: A comparison of upscaling techniques”, SPE Reservoir Eval. Eng., 4:4 (2001), 308–317 | DOI | MR
[6] Chung E. T., Efendiev Y., Lee C. S., “Mixed generalized multiscale finite element methods and applications”, Multiscale Model. Simul., 13:1 (2015), 338–366 | DOI | MR | Zbl
[7] Chung E. T., Efendiev Y., Leung W. T., Ren J., “Multiscale simulations for coupled flow and transport using the generalized multiscale finite element method”, Computation, 3:4 (2015), 670–686 | DOI
[8] Aarnes J. E., Gimse T., Lie K. A., “An introduction to the numerics of flow in porous media using Matlab”, Geometric Modelling, Numerical Simulation, and Optimization, Springer, Berlin–Heidelberg, 2007, 265–306 | DOI | MR | Zbl
[9] Jenny P., Lee S. H., Tchelepi H. A., “Adaptive fully implicit multi-scale finite-volume method for multi-phase flow and transport in heterogeneous porous media”, J. Comput. Phys., 217:2 (2006), 627–641 | DOI | MR | Zbl
[10] Brenner S., Scott R., The Mathematical Theory of Finite Element Methods, Springer Science Business Media, 2007, 400 pp.
[11] Brezzi F., Fortin M., Mixed and Hybrid Finite Element Methods, Springer, Berlin, 1991, 350 pp. | MR | Zbl
[12] Raviart P. A., Thomas J. M., “A mixed finite element method for 2-nd order elliptic problems”, Mathematical Aspects of Finite Element Methods, Springer, Berlin–Heidelberg, 1977, 292–315 | DOI | MR
[13] Carstensen C., “A posteriori error estimate for the mixed finite element method”, Math. Comput., Am. Math. Soc., 66:218 (1997), 465–476 | DOI | MR | Zbl
[14] Vabishchevich P. N., Vasil'eva M. V., “Explicit-implicit schemes for convection-diffusion-reaction problems”, Numer. Anal. Appl., 5:4 (2012), 297–306 | DOI | Zbl
[15] Afanas'eva N. M., Vabishchevich P. N., Vasil'eva M. V., “Unconditionally stable schemes for convection-diffusion problems”, Russ. Math., 57:3 (2013), 1–11 | DOI | MR | Zbl
[16] Donea J., Huerta A., Finite Element Methods for Flow Problems, John Wiley Sons Ltd., Chichester, 2003, 362 pp.
[17] Brooks A. N., A Petrov–Galerkin finite element formulation for convection dominated flows, Dissertation (Ph. D.), California Institute of Technology, California, 1981, 126 pp.
[18] Ol'shanskii M. A., “An analysis of the multigrid method for the convection-diffusion equations with the Drichlet boundary conditions”, Comput. Math. Math. Phys., 44:8 (2004), 1374–1403 | MR | Zbl
[19] Riviere B., Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation, SIAM, 2008, 212 pp. | MR | Zbl
[20] Riviere B., Wheeler M. F., “Discontinuous Galerkin methods for flow and transport problems in porous media”, Commun. Numer. Methods Eng., 18:1 (2002), 63–68 | DOI | MR | Zbl
[21] Arnold D. N., Brezzi F., Cockburn B., Marini L. D., “Unified analysis of discontinuous Galerkin methods for elliptic problems”, SIAM J. Numer. Anal., 39:5 (2002), 1749–1779 | DOI | MR | Zbl
[22] Cockburn B., Shu C. W., “The local discontinuous Galerkin method for time-dependent convection-diffusion systems”, SIAM J. Numer. Anal., 35:6 (1998), 2440–2463 | DOI | MR | Zbl
[23] Cockburn B., Shu C. W., “Runge–Kutta discontinuous Galerkin methods for convection-dominated problems”, J. Sci. Comput., 16:3 (2001), 173–261 | DOI | MR | Zbl
[24] Reed W. H., Hill T. R., Triangular Mesh Methods for the Neutron Transport Equation, Report LA-UR-73-479, Los Alamos Scientific Lab., Los Alamos, 1973, 23 pp.
[25] Brezzi F., Manzini G., Marini D., Pietra P., Russo A., “Discontinuous Galerkin approximations for elliptic problems”, Numer. Methods Partial Differ. Equations, 16:4 (2000), 365–378 | 3.0.CO;2-Y class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[26] Riviere B., Shaw S., Wheeler M. F., Whiteman J. R., “Discontinuous Galerkin finite element methods for linear elasticity and quasistatic linear viscoelasticity”, Numer. Math., 95:2 (2003), 347–376 | DOI | MR | Zbl
[27] Girault V., Riviere B., Wheeler M. F., “A discontinuous Galerkin method with non-overlapping domain decomposition for the Stokes and Navier–Stokes problems”, Math. Comput., 74:249 (2005), 53–84 | DOI | MR | Zbl
[28] Girault V., Riviere B., “DG approximation of coupled Navier–Stokes and Darcy equations by Beaver–Joseph–Saffman interface condition”, SIAM J. Numer. Anal., 47:3 (2009), 2052–2089 | DOI | MR | Zbl
[29] Cockburn B., Kanschat G., Schotzau D., “The local discontinuous Galerkin method for the Oseen equations”, Math. Comput., 73:246 (2004), 569–593 | DOI | MR | Zbl
[30] Cockburn B., Kanschat G., Schotzau D., “A note on discontinuous Galerkin divergence-free solutions of the Navier–Stokes equations”, J. Sci. Comput., 31:1–2 (2007), 61–73 | DOI | MR | Zbl
[31] Sun S., Wheeler M. F., “Discontinuous Galerkin methods for coupled flow and reactive transport problems”, Appl. Numer. Math., 52:2 (2005), 273–298 | DOI | MR | Zbl
[32] Babuska I., Baumann C. E., Oden J. T., “A discontinuous hp finite element method for diffusion problems: 1-D analysis”, Comput. Math. Appl., 37:9 (1999), 103–122 | DOI | MR | Zbl
[33] Wheeler M. F., “An elliptic collocation-finite element method with interior penalties”, SIAM J. Numer. Anal., 15:1 (1978), 152–161 | DOI | MR | Zbl
[34] Gottlieb S., Wei G. W., Zhao S., A unified discontinuous Galerkin framework for time integration, Preprint. URL: , 2010, 42 pp. http://fodava.gatech.edu/files/reports/FODAVA-10-34.pdf | MR
[35] Kirby R. M., Sherwin S. J., Cockburn B., “To CG or to HDG: a comparative study”, J. Sci. Comput., 51:1 (2012), 183–212 | DOI | MR | Zbl
[36] Nguyen N. C., Peraire J., Cockburn B., “An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations”, J. Comput. Phys., 228:9 (2009), 3232–3254 | DOI | MR
[37] Demkowicz L., Gopalakrishnan J., “Analysis of the DPG method for the Poisson equation”, SIAM J. Numer. Anal., 49:5 (2011), 1788–1809 | DOI | MR | Zbl
[38] Demkowicz L., Gopalakrishnan J., “A class of discontinuous Petrov–Galerkin methods. Part I: The transport equation”, Comput. Methods Appl. Mech. Eng., 199:23 (2010), 1558–1572 | DOI | MR | Zbl
[39] Dautov R. Z., Fedotov E. M., “Discontinuous mixed penalty-free Galerkin method for second-order quasilinear elliptic equations”, Comput. Math. Math. Phys., 53:11 (2013), 1614–1625 | DOI | DOI | MR | Zbl
[40] Dautov R. Z., Fedotov E. M., “Abstract theory of hybridizable discontinuous Galerkin methods for second-order quasilinear elliptic problems”, Comput. Math. Math. Phys., 54:3 (2014), 474–490 | DOI | DOI | MR | Zbl
[41] Anders Logg, Kent-Andre Mardal, Garth N. Wells, Automated Solution of Differential Equations by the Finite Element Method, The FEniCS Book, 2011, 723 pp. | MR
[42] Software GMSH, URL: http://geuz.org/gmsh/
[43] Software package PARAVIEW, URL: http://www.paraview.org/