Numerical solution of the convective and diffusive transport problems in a heterogeneous porous medium using finite element method
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 2, pp. 243-261 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The finite element approximation of the convective and diffusive transport equation has been considered. Different methods for stabilization of the finite element approximation have been discussed: upwind approximation of the convective term using artificial diffusion (AD) and streamline upwind Petrov–Galerkin (SUPG) method, both used for stabilization of the classic Galerkin method. Another approach to approximation of the transport equation related to the discontinuous Galerkin method (DG) has been investigated. This method also allows to approximate the convective term using upwind schemes. The results of the numerical comparison of the considered schemes for the convective and diffusive transport problems in a porous media have been presented. The flow and transport in a highly contrast heterogeneous porous media that lead to the significant pressure gradients and, therefore, high velocities have been considered as test problems.
Mots-clés : convection-diffusion equation, filtration
Keywords: heterogeneous porous media, finite element method, numerical stabilization, classic Galerkin method, discontinuous Galerkin method.
@article{UZKU_2016_158_2_a7,
     author = {M. V. Vasilyeva and V. I. Vasilyev and T. S. Timofeeva},
     title = {Numerical solution of the convective and diffusive transport problems in a~heterogeneous porous medium using finite element method},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {243--261},
     year = {2016},
     volume = {158},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a7/}
}
TY  - JOUR
AU  - M. V. Vasilyeva
AU  - V. I. Vasilyev
AU  - T. S. Timofeeva
TI  - Numerical solution of the convective and diffusive transport problems in a heterogeneous porous medium using finite element method
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2016
SP  - 243
EP  - 261
VL  - 158
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a7/
LA  - ru
ID  - UZKU_2016_158_2_a7
ER  - 
%0 Journal Article
%A M. V. Vasilyeva
%A V. I. Vasilyev
%A T. S. Timofeeva
%T Numerical solution of the convective and diffusive transport problems in a heterogeneous porous medium using finite element method
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2016
%P 243-261
%V 158
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a7/
%G ru
%F UZKU_2016_158_2_a7
M. V. Vasilyeva; V. I. Vasilyev; T. S. Timofeeva. Numerical solution of the convective and diffusive transport problems in a heterogeneous porous medium using finite element method. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 2, pp. 243-261. http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a7/

[1] Aziz K., Settari A., Petroleum Reservoir Simulation, Appl. Sci. Publ. Ltd., London, 1979, 497 pp.

[2] Bear J., Dynamics of Fluids in Porous Media, Dover Publ., Inc., N.Y., 1972, 764 pp.

[3] Chen Z., Huan G., Ma Y., Computational Methods for Multiphase Flows in Porous Media, SIAM, 2006, 561 pp. | MR | Zbl

[4] Vabishchevich P. N., Vasil'eva M., “Iterative solution of the pressure problem for the multi-phase filtration”, Math. Model. Anal., 17:4 (2012), 532–549 | DOI | MR

[5] Christie M. A., Blunt M. J., “Tenth SPE comparative solution project: A comparison of upscaling techniques”, SPE Reservoir Eval. Eng., 4:4 (2001), 308–317 | DOI | MR

[6] Chung E. T., Efendiev Y., Lee C. S., “Mixed generalized multiscale finite element methods and applications”, Multiscale Model. Simul., 13:1 (2015), 338–366 | DOI | MR | Zbl

[7] Chung E. T., Efendiev Y., Leung W. T., Ren J., “Multiscale simulations for coupled flow and transport using the generalized multiscale finite element method”, Computation, 3:4 (2015), 670–686 | DOI

[8] Aarnes J. E., Gimse T., Lie K. A., “An introduction to the numerics of flow in porous media using Matlab”, Geometric Modelling, Numerical Simulation, and Optimization, Springer, Berlin–Heidelberg, 2007, 265–306 | DOI | MR | Zbl

[9] Jenny P., Lee S. H., Tchelepi H. A., “Adaptive fully implicit multi-scale finite-volume method for multi-phase flow and transport in heterogeneous porous media”, J. Comput. Phys., 217:2 (2006), 627–641 | DOI | MR | Zbl

[10] Brenner S., Scott R., The Mathematical Theory of Finite Element Methods, Springer Science Business Media, 2007, 400 pp.

[11] Brezzi F., Fortin M., Mixed and Hybrid Finite Element Methods, Springer, Berlin, 1991, 350 pp. | MR | Zbl

[12] Raviart P. A., Thomas J. M., “A mixed finite element method for 2-nd order elliptic problems”, Mathematical Aspects of Finite Element Methods, Springer, Berlin–Heidelberg, 1977, 292–315 | DOI | MR

[13] Carstensen C., “A posteriori error estimate for the mixed finite element method”, Math. Comput., Am. Math. Soc., 66:218 (1997), 465–476 | DOI | MR | Zbl

[14] Vabishchevich P. N., Vasil'eva M. V., “Explicit-implicit schemes for convection-diffusion-reaction problems”, Numer. Anal. Appl., 5:4 (2012), 297–306 | DOI | Zbl

[15] Afanas'eva N. M., Vabishchevich P. N., Vasil'eva M. V., “Unconditionally stable schemes for convection-diffusion problems”, Russ. Math., 57:3 (2013), 1–11 | DOI | MR | Zbl

[16] Donea J., Huerta A., Finite Element Methods for Flow Problems, John Wiley Sons Ltd., Chichester, 2003, 362 pp.

[17] Brooks A. N., A Petrov–Galerkin finite element formulation for convection dominated flows, Dissertation (Ph. D.), California Institute of Technology, California, 1981, 126 pp.

[18] Ol'shanskii M. A., “An analysis of the multigrid method for the convection-diffusion equations with the Drichlet boundary conditions”, Comput. Math. Math. Phys., 44:8 (2004), 1374–1403 | MR | Zbl

[19] Riviere B., Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation, SIAM, 2008, 212 pp. | MR | Zbl

[20] Riviere B., Wheeler M. F., “Discontinuous Galerkin methods for flow and transport problems in porous media”, Commun. Numer. Methods Eng., 18:1 (2002), 63–68 | DOI | MR | Zbl

[21] Arnold D. N., Brezzi F., Cockburn B., Marini L. D., “Unified analysis of discontinuous Galerkin methods for elliptic problems”, SIAM J. Numer. Anal., 39:5 (2002), 1749–1779 | DOI | MR | Zbl

[22] Cockburn B., Shu C. W., “The local discontinuous Galerkin method for time-dependent convection-diffusion systems”, SIAM J. Numer. Anal., 35:6 (1998), 2440–2463 | DOI | MR | Zbl

[23] Cockburn B., Shu C. W., “Runge–Kutta discontinuous Galerkin methods for convection-dominated problems”, J. Sci. Comput., 16:3 (2001), 173–261 | DOI | MR | Zbl

[24] Reed W. H., Hill T. R., Triangular Mesh Methods for the Neutron Transport Equation, Report LA-UR-73-479, Los Alamos Scientific Lab., Los Alamos, 1973, 23 pp.

[25] Brezzi F., Manzini G., Marini D., Pietra P., Russo A., “Discontinuous Galerkin approximations for elliptic problems”, Numer. Methods Partial Differ. Equations, 16:4 (2000), 365–378 | 3.0.CO;2-Y class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[26] Riviere B., Shaw S., Wheeler M. F., Whiteman J. R., “Discontinuous Galerkin finite element methods for linear elasticity and quasistatic linear viscoelasticity”, Numer. Math., 95:2 (2003), 347–376 | DOI | MR | Zbl

[27] Girault V., Riviere B., Wheeler M. F., “A discontinuous Galerkin method with non-overlapping domain decomposition for the Stokes and Navier–Stokes problems”, Math. Comput., 74:249 (2005), 53–84 | DOI | MR | Zbl

[28] Girault V., Riviere B., “DG approximation of coupled Navier–Stokes and Darcy equations by Beaver–Joseph–Saffman interface condition”, SIAM J. Numer. Anal., 47:3 (2009), 2052–2089 | DOI | MR | Zbl

[29] Cockburn B., Kanschat G., Schotzau D., “The local discontinuous Galerkin method for the Oseen equations”, Math. Comput., 73:246 (2004), 569–593 | DOI | MR | Zbl

[30] Cockburn B., Kanschat G., Schotzau D., “A note on discontinuous Galerkin divergence-free solutions of the Navier–Stokes equations”, J. Sci. Comput., 31:1–2 (2007), 61–73 | DOI | MR | Zbl

[31] Sun S., Wheeler M. F., “Discontinuous Galerkin methods for coupled flow and reactive transport problems”, Appl. Numer. Math., 52:2 (2005), 273–298 | DOI | MR | Zbl

[32] Babuska I., Baumann C. E., Oden J. T., “A discontinuous hp finite element method for diffusion problems: 1-D analysis”, Comput. Math. Appl., 37:9 (1999), 103–122 | DOI | MR | Zbl

[33] Wheeler M. F., “An elliptic collocation-finite element method with interior penalties”, SIAM J. Numer. Anal., 15:1 (1978), 152–161 | DOI | MR | Zbl

[34] Gottlieb S., Wei G. W., Zhao S., A unified discontinuous Galerkin framework for time integration, Preprint. URL: , 2010, 42 pp. http://fodava.gatech.edu/files/reports/FODAVA-10-34.pdf | MR

[35] Kirby R. M., Sherwin S. J., Cockburn B., “To CG or to HDG: a comparative study”, J. Sci. Comput., 51:1 (2012), 183–212 | DOI | MR | Zbl

[36] Nguyen N. C., Peraire J., Cockburn B., “An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations”, J. Comput. Phys., 228:9 (2009), 3232–3254 | DOI | MR

[37] Demkowicz L., Gopalakrishnan J., “Analysis of the DPG method for the Poisson equation”, SIAM J. Numer. Anal., 49:5 (2011), 1788–1809 | DOI | MR | Zbl

[38] Demkowicz L., Gopalakrishnan J., “A class of discontinuous Petrov–Galerkin methods. Part I: The transport equation”, Comput. Methods Appl. Mech. Eng., 199:23 (2010), 1558–1572 | DOI | MR | Zbl

[39] Dautov R. Z., Fedotov E. M., “Discontinuous mixed penalty-free Galerkin method for second-order quasilinear elliptic equations”, Comput. Math. Math. Phys., 53:11 (2013), 1614–1625 | DOI | DOI | MR | Zbl

[40] Dautov R. Z., Fedotov E. M., “Abstract theory of hybridizable discontinuous Galerkin methods for second-order quasilinear elliptic problems”, Comput. Math. Math. Phys., 54:3 (2014), 474–490 | DOI | DOI | MR | Zbl

[41] Anders Logg, Kent-Andre Mardal, Garth N. Wells, Automated Solution of Differential Equations by the Finite Element Method, The FEniCS Book, 2011, 723 pp. | MR

[42] Software GMSH, URL: http://geuz.org/gmsh/

[43] Software package PARAVIEW, URL: http://www.paraview.org/