Keywords: estimation of parameters, method of moments, delta method, asymptotic normality, accuracy properties of estimates.
@article{UZKU_2016_158_2_a5,
author = {A. N. Safiullina},
title = {Estimation of the binominal distribution parameters using the method of moments and its asymptotic properties},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {221--230},
year = {2016},
volume = {158},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a5/}
}
TY - JOUR AU - A. N. Safiullina TI - Estimation of the binominal distribution parameters using the method of moments and its asymptotic properties JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2016 SP - 221 EP - 230 VL - 158 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a5/ LA - ru ID - UZKU_2016_158_2_a5 ER -
%0 Journal Article %A A. N. Safiullina %T Estimation of the binominal distribution parameters using the method of moments and its asymptotic properties %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2016 %P 221-230 %V 158 %N 2 %U http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a5/ %G ru %F UZKU_2016_158_2_a5
A. N. Safiullina. Estimation of the binominal distribution parameters using the method of moments and its asymptotic properties. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 2, pp. 221-230. http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a5/
[1] DasGupta A., Rubin H., “Estimation of binomial parameters when both $n,p$ are unknown”, J. Stat. Plann. Inference, 130:1–2 (2005), 391–404 | DOI | MR | Zbl
[2] Nicholls J., Martin R., Wallace B., Fuchs P., From Neuron to Brain, Editorial URSS, Moscow, 2003, 672 pp. (In Russian)
[3] Haldane J. B. S., “The fitting of binomial distributions”, Ann. Eugen., 11:1 (1941), 179–181 | DOI | MR | Zbl
[4] Binet F. E., “The fitting of the positive binomial distribution when both parameters are estimated from the sample”, Ann. Eugen., 17:1 (1954), 117–119 | DOI | MR
[5] Blumenthal S., Dahiya R. C., “Estimating the binomial parameter $n$”, J. Am. Stat. Assoc., 76:376 (1981), 903–909 | MR | Zbl
[6] Olkin I., Petkau A. J., Zidek J. V., “A comparison of n estimators for the binomial distribution”, J. Am. Stat. Assoc., 76:375 (1981), 637–642 | MR | Zbl
[7] Hoel P. G., “Discriminating between binomial distribution”, Ann. Math. Stat., 18:4 (1947), 556–564 | DOI | MR | Zbl
[8] Hall P., “On the erratic behavior of estimators of $N$ in the binomial $N,p$ distribution”, J. Am. Stat. Assoc., 89:425 (1994), 344–352 | MR | Zbl
[9] Draper N., Guttman I., “Bayesian estimation of the binomial parameter”, Technometrics, 13:3 (1971), 667–673 | DOI | Zbl
[10] Raftery A. E. Inference for the binomial $N$ parameter: A hierarchical Bayes approach, Biometrika, 75:2 (1988), 223–228 | DOI | Zbl
[11] Carroll R. J., Lombard F., “A note on $N$ estimators for the binomial distribution”, J. Am. Stat. Assoc., 80:390 (1985), 423–426 | MR
[12] Kramer H., Mathematical Methods of Statistics, GIIL, Moscow, 1948, 631 pp. (In Russian)
[13] van der Vaart A. W., Asymptotic statistics, Cambridge Univ. Press, Cambridge, 1998, 443 pp. | MR | Zbl