@article{UZKU_2016_158_2_a4,
author = {N. N. Nakipov and S. R. Nasyrov},
title = {A parametric method of finding accessory parameters for the generalized {Schwarz{\textendash}Christoffel} integrals},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {202--220},
year = {2016},
volume = {158},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a4/}
}
TY - JOUR AU - N. N. Nakipov AU - S. R. Nasyrov TI - A parametric method of finding accessory parameters for the generalized Schwarz–Christoffel integrals JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2016 SP - 202 EP - 220 VL - 158 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a4/ LA - ru ID - UZKU_2016_158_2_a4 ER -
%0 Journal Article %A N. N. Nakipov %A S. R. Nasyrov %T A parametric method of finding accessory parameters for the generalized Schwarz–Christoffel integrals %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2016 %P 202-220 %V 158 %N 2 %U http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a4/ %G ru %F UZKU_2016_158_2_a4
N. N. Nakipov; S. R. Nasyrov. A parametric method of finding accessory parameters for the generalized Schwarz–Christoffel integrals. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 2, pp. 202-220. http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a4/
[1] Christoffel E. B., “Sul problema delle temperature stazonarie e la rappresentazione di una data superficie”, Ann. Mat. Pura Appl. Ser. II, 1 (1867), 89–103 | DOI
[2] Schwarz H. A., “Ueber einige Abbildungsaufgaben”, J. Reine Angew. Math., 70 (1869), 105–120 | DOI | MR
[3] Lavrent'ev M. A., Conformal Transformations with Applications to Certain Problems of Mechanics, Gostekhizdat, Moscow–Leningrad, 1946, 160 pp. (In Russian)
[4] Lavrent'ev M. A., Shabat B. V., Methods of the Theory of Functions of Complex Variable, Nauka, Moscow, 1965, 716 pp. (In Russian) | MR
[5] Weinstein A., “Der Kontinuitatsbeweis des Abbildungssatzes fur Polygone”, Math. Z., 19 (1924), 72–84 | DOI | MR
[6] Weinstein A., “Ein hydrodynamischer Unitatsatz”, Math. Z., 19 (1924), 265–274 | DOI | MR
[7] Bergmann S., “Ueber die Bestimmung der Verzweigungspunkte eines hyperelliptischen Integrals aus seinen Periodizitatsmoduln mit Anwendungen auf die Theorie des Transformators”, Math. Z., 19 (1923), 8–25 | DOI | MR | Zbl
[8] Bergmann S., “Ueber die Berechnung des magnetischen Feldes in einem Einphasen-Transformator”, Z. Angew. Math. Mech., 5 (1925), 319–331 | DOI | Zbl
[9] Goluzin G. M., Kantorovich L. V., Krylov V. I., Melent'ev P. V., Muratov M. I., Stenin N. P., Conformal Mapping of Simply- and Multiply-Connected Domains, Gostekhizdat, Moscow–Leningrad, 1937, 105 pp. (In Russian)
[10] Khara I. S., “On a Method of Approximate Conformal Mapping of Polygonal Regions on the Unit Circle”, Dokl. Akad. Nauk Ukr. SSR, 1953, no. 4, 289–293 (In Russian)
[11] Koppenfels W., Stallman F., The Practice of Conformal Mappings, Inostr. Lit., Moscow, 1963, 406 pp. (In Russian)
[12] Fil'chakov P. F., “Determination of the constants of the Schwarz–Christoffel integral by means of generalized power series”, Certain Problems in Mathematics and Mechanics, On the 60th Anniversary of M. A. Lavrent'ev, Izd. Sib. Otd. Akad. Nauk SSSR, Novosibirsk, 1961, 236–252 (In Russian)
[13] Driskoll T. A., Treffethen L. N., Schwarz–Christoffel Mapping, Cambridge Univ. Press, Cambridge, 2002, 132 pp. | MR
[14] Papamichael N., Stylianopoulos N. S., Numerical conformal mapping: domain decomposition and the mapping of quadrilaterals, World Scientific, New Jersey–London–Singapore, 2010, 241 pp. | MR | Zbl
[15] Wegmann R., “Methods for numerical conformal mapping”, Handbook of Complex Analysis: Geometric Function Theory, v. 2, ed. R. Kühnau, Elsevier, Amsterdam, 2005, 351–477 | DOI | MR | Zbl
[16] Driscoll T. A., A MATLAB Toolbox for Schwarz–Christoffel mapping methods, URL: www.math.udel.edu/~driscoll/SC
[17] Goluzin G. M., Geometric Theory of Functions of a Complex Variable, Nauka, Moscow, 1966, 628 pp. (In Russian) | MR
[18] Alkesandrov I. A., Parametrical Extensions in the Theory of Univalent Functions, Nauka, Moscow, 1976, 344 pp. (In Russian) | MR
[19] Aleksandrov I. A. (Ed.), Transactions of P. P. Kufarev: On the 100th Anniversary of Birth, Izd. Nauchno-Tekh. Lit., Tomsk, 2009, 86–88 (In Russian)
[20] Chistyakov Yu. V., “On a method of approximate computation of the function mapping conformally the circle onto domains limited by circular arcs and straight line segments”, Uch. Zap. Tomsk. Univ., 1960, no. 14, 143–151 (In Russian)
[21] Gutlyanskii V. Ya., Zaidan A. O., “On conformal mapping of polygonal regions”, Ukr. Math. J., 45:11 (1993), 1669–1680 | MR | Zbl
[22] Gutlyanskii V. Ya., Ryazanov V. I., The Geometric and Topological Theory of Functions and Mappings, Naukova Dumka, Kiev, 2011, 428 pp. (In Russian)
[23] Hopkins T. R., Roberts D. E., “Kufarev's method for determination the Schwarz–Christoffel parameters”, Numer. Math., 33:4 (1979), 353–365 | DOI | MR | Zbl
[24] Nizamieva L. Yu., “Finding accessory parameters in the Schwarz–Christoffel integral by the method of moving section”, Theory of Functions, Its Applications, and Related Problems, Proc. 9th Int. Kazan. Summer Sci. Sch.-Conf., Proc. N. I. Lobachevskii Math. Cent., 38, Kazan. Mat. O-vo, Kazan, 2009, 192–194 (In Russian)
[25] Nizamieva L. Yu., “Finding accessory parameters in the Schwarz–Christoffel integral”, Consumer Cooperation: Theory, Methodology, Practice, Proc. Int. Sci.-Pract. Conf., Ross. Univ. Koop., Moscow, 2010, 313–319 (In Russian)
[26] Nizamieva L. Yu., Internal and external mixed inverse boundary value problems for the parameter $x$, Cand. Phys.-Math. Sci. Diss., Kazan, 2011, 102 pp. (In Russian)
[27] Bezrodnykh S. I., Vlasov V. I., “Singular Riemann–Hilbert problem in complex-shaped domains”, Comput. Math. Math. Phys., 54:12 (1826–1875) | DOI | DOI | MR | Zbl
[28] Kolesnikov I. A., Conformal mappings of canonical domains onto domains with symmetry, Cand. Phys.-Math. Sci., Tomsk, 2014, 106 pp. (In Russian)
[29] Nakipov N. N., Nasyrov S. R., “Asymptotics of accessory parameters in the generalized Schwarz–Christoffel integral and solution to one operator equation”, Collection of Scientific Articles of Kazan University, 2012, Based on the Results of the Competition for the Best Scientific Work between Students and the Materials of the Final Scientific Conference of Students of 2012, Kazan. Univ., Kazan, 2012, 43–46 (In Russian)
[30] Nakipov N. N., Nasyrov S. R., “Finding accessory parameters in the generalized Schwarz–Christoffel integrals”, Proc. Voronezh. Winter Math. Sch. “Modern Methods of the Theory of Functions and Related Problems” (Voronezh, January 27 – February 2, 2013), VGU, Voronezh, 2013, 157–159 (In Russian)
[31] Nasyrov S. R., Geometric Problems in Theory of Ramified Coverings of Riemann Surfaces, Megarif, Kazan, 2008, 276 pp. (In Russian)
[32] Nasyrov S. R., “Determination of the polynominal uniformizing a given compact Riemann surface”, Math. Notes, 91:3 (2012), 558–567 | DOI | DOI | MR | Zbl
[33] Nasyrov S. R., Faizov I. Z., “Local uniqueness of solution of a mixed boundary value problem for Riemann surfaces with branch points”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 48, no. 2, 2006, 97–108 (In Russian) | Zbl
[34] Pontryagin L. S., Ordinary Differential Equations, Nauka, Moscow, 1974, 331 pp. (In Russian)
[35] Gakhov F. D., Boundary Value Problems, Nauka, Moscow, 1977, 640 pp. (In Russian) | MR
[36] Nemytskii V. V., Stepanov V. V., Qualitative Theory of Differential Equations, GITTL, Moscow–Leningrad, 1947, 448 pp. (In Russian)