A parametric method of finding accessory parameters for the generalized Schwarz–Christoffel integrals
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 2, pp. 202-220 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An approximate method of finding accessory parameters for the generalized Schwarz–Christoffel integrals has been suggested. The integrals provide conformal mappings of a half-plane onto the polygonal Riemann surfaces with inner branch points. The method is based on including the desired map into a one-parametric family of conformal mappings of the upper half-plane onto the Riemann surfaces which are obtained from some fixed Riemann surface by cutting it along an elongated polygonal slit. A system of ordinary differential equations for parameters of the Schwarz–Christoffel integrals, i.e., for the preimages of their vertexes and branch points, has been deduced. Application of the method consists in solving a number of successive Cauchy problems describing the process of moving of the end of the slit along the chains of the polygon. The solution obtained in the previous step forms the initial data for the Cauchy problem in the next step. A numeric example illustrating the method has been considered. For univalent mappings, a similar method was first suggested by P. P. Kufarev.
Keywords: Schwarz–Christoffel integrals, multivalent functions, parametric method.
@article{UZKU_2016_158_2_a4,
     author = {N. N. Nakipov and S. R. Nasyrov},
     title = {A parametric method of finding accessory parameters for the generalized {Schwarz{\textendash}Christoffel} integrals},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {202--220},
     year = {2016},
     volume = {158},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a4/}
}
TY  - JOUR
AU  - N. N. Nakipov
AU  - S. R. Nasyrov
TI  - A parametric method of finding accessory parameters for the generalized Schwarz–Christoffel integrals
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2016
SP  - 202
EP  - 220
VL  - 158
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a4/
LA  - ru
ID  - UZKU_2016_158_2_a4
ER  - 
%0 Journal Article
%A N. N. Nakipov
%A S. R. Nasyrov
%T A parametric method of finding accessory parameters for the generalized Schwarz–Christoffel integrals
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2016
%P 202-220
%V 158
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a4/
%G ru
%F UZKU_2016_158_2_a4
N. N. Nakipov; S. R. Nasyrov. A parametric method of finding accessory parameters for the generalized Schwarz–Christoffel integrals. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 2, pp. 202-220. http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a4/

[1] Christoffel E. B., “Sul problema delle temperature stazonarie e la rappresentazione di una data superficie”, Ann. Mat. Pura Appl. Ser. II, 1 (1867), 89–103 | DOI

[2] Schwarz H. A., “Ueber einige Abbildungsaufgaben”, J. Reine Angew. Math., 70 (1869), 105–120 | DOI | MR

[3] Lavrent'ev M. A., Conformal Transformations with Applications to Certain Problems of Mechanics, Gostekhizdat, Moscow–Leningrad, 1946, 160 pp. (In Russian)

[4] Lavrent'ev M. A., Shabat B. V., Methods of the Theory of Functions of Complex Variable, Nauka, Moscow, 1965, 716 pp. (In Russian) | MR

[5] Weinstein A., “Der Kontinuitatsbeweis des Abbildungssatzes fur Polygone”, Math. Z., 19 (1924), 72–84 | DOI | MR

[6] Weinstein A., “Ein hydrodynamischer Unitatsatz”, Math. Z., 19 (1924), 265–274 | DOI | MR

[7] Bergmann S., “Ueber die Bestimmung der Verzweigungspunkte eines hyperelliptischen Integrals aus seinen Periodizitatsmoduln mit Anwendungen auf die Theorie des Transformators”, Math. Z., 19 (1923), 8–25 | DOI | MR | Zbl

[8] Bergmann S., “Ueber die Berechnung des magnetischen Feldes in einem Einphasen-Transformator”, Z. Angew. Math. Mech., 5 (1925), 319–331 | DOI | Zbl

[9] Goluzin G. M., Kantorovich L. V., Krylov V. I., Melent'ev P. V., Muratov M. I., Stenin N. P., Conformal Mapping of Simply- and Multiply-Connected Domains, Gostekhizdat, Moscow–Leningrad, 1937, 105 pp. (In Russian)

[10] Khara I. S., “On a Method of Approximate Conformal Mapping of Polygonal Regions on the Unit Circle”, Dokl. Akad. Nauk Ukr. SSR, 1953, no. 4, 289–293 (In Russian)

[11] Koppenfels W., Stallman F., The Practice of Conformal Mappings, Inostr. Lit., Moscow, 1963, 406 pp. (In Russian)

[12] Fil'chakov P. F., “Determination of the constants of the Schwarz–Christoffel integral by means of generalized power series”, Certain Problems in Mathematics and Mechanics, On the 60th Anniversary of M. A. Lavrent'ev, Izd. Sib. Otd. Akad. Nauk SSSR, Novosibirsk, 1961, 236–252 (In Russian)

[13] Driskoll T. A., Treffethen L. N., Schwarz–Christoffel Mapping, Cambridge Univ. Press, Cambridge, 2002, 132 pp. | MR

[14] Papamichael N., Stylianopoulos N. S., Numerical conformal mapping: domain decomposition and the mapping of quadrilaterals, World Scientific, New Jersey–London–Singapore, 2010, 241 pp. | MR | Zbl

[15] Wegmann R., “Methods for numerical conformal mapping”, Handbook of Complex Analysis: Geometric Function Theory, v. 2, ed. R. Kühnau, Elsevier, Amsterdam, 2005, 351–477 | DOI | MR | Zbl

[16] Driscoll T. A., A MATLAB Toolbox for Schwarz–Christoffel mapping methods, URL: www.math.udel.edu/~driscoll/SC

[17] Goluzin G. M., Geometric Theory of Functions of a Complex Variable, Nauka, Moscow, 1966, 628 pp. (In Russian) | MR

[18] Alkesandrov I. A., Parametrical Extensions in the Theory of Univalent Functions, Nauka, Moscow, 1976, 344 pp. (In Russian) | MR

[19] Aleksandrov I. A. (Ed.), Transactions of P. P. Kufarev: On the 100th Anniversary of Birth, Izd. Nauchno-Tekh. Lit., Tomsk, 2009, 86–88 (In Russian)

[20] Chistyakov Yu. V., “On a method of approximate computation of the function mapping conformally the circle onto domains limited by circular arcs and straight line segments”, Uch. Zap. Tomsk. Univ., 1960, no. 14, 143–151 (In Russian)

[21] Gutlyanskii V. Ya., Zaidan A. O., “On conformal mapping of polygonal regions”, Ukr. Math. J., 45:11 (1993), 1669–1680 | MR | Zbl

[22] Gutlyanskii V. Ya., Ryazanov V. I., The Geometric and Topological Theory of Functions and Mappings, Naukova Dumka, Kiev, 2011, 428 pp. (In Russian)

[23] Hopkins T. R., Roberts D. E., “Kufarev's method for determination the Schwarz–Christoffel parameters”, Numer. Math., 33:4 (1979), 353–365 | DOI | MR | Zbl

[24] Nizamieva L. Yu., “Finding accessory parameters in the Schwarz–Christoffel integral by the method of moving section”, Theory of Functions, Its Applications, and Related Problems, Proc. 9th Int. Kazan. Summer Sci. Sch.-Conf., Proc. N. I. Lobachevskii Math. Cent., 38, Kazan. Mat. O-vo, Kazan, 2009, 192–194 (In Russian)

[25] Nizamieva L. Yu., “Finding accessory parameters in the Schwarz–Christoffel integral”, Consumer Cooperation: Theory, Methodology, Practice, Proc. Int. Sci.-Pract. Conf., Ross. Univ. Koop., Moscow, 2010, 313–319 (In Russian)

[26] Nizamieva L. Yu., Internal and external mixed inverse boundary value problems for the parameter $x$, Cand. Phys.-Math. Sci. Diss., Kazan, 2011, 102 pp. (In Russian)

[27] Bezrodnykh S. I., Vlasov V. I., “Singular Riemann–Hilbert problem in complex-shaped domains”, Comput. Math. Math. Phys., 54:12 (1826–1875) | DOI | DOI | MR | Zbl

[28] Kolesnikov I. A., Conformal mappings of canonical domains onto domains with symmetry, Cand. Phys.-Math. Sci., Tomsk, 2014, 106 pp. (In Russian)

[29] Nakipov N. N., Nasyrov S. R., “Asymptotics of accessory parameters in the generalized Schwarz–Christoffel integral and solution to one operator equation”, Collection of Scientific Articles of Kazan University, 2012, Based on the Results of the Competition for the Best Scientific Work between Students and the Materials of the Final Scientific Conference of Students of 2012, Kazan. Univ., Kazan, 2012, 43–46 (In Russian)

[30] Nakipov N. N., Nasyrov S. R., “Finding accessory parameters in the generalized Schwarz–Christoffel integrals”, Proc. Voronezh. Winter Math. Sch. “Modern Methods of the Theory of Functions and Related Problems” (Voronezh, January 27 – February 2, 2013), VGU, Voronezh, 2013, 157–159 (In Russian)

[31] Nasyrov S. R., Geometric Problems in Theory of Ramified Coverings of Riemann Surfaces, Megarif, Kazan, 2008, 276 pp. (In Russian)

[32] Nasyrov S. R., “Determination of the polynominal uniformizing a given compact Riemann surface”, Math. Notes, 91:3 (2012), 558–567 | DOI | DOI | MR | Zbl

[33] Nasyrov S. R., Faizov I. Z., “Local uniqueness of solution of a mixed boundary value problem for Riemann surfaces with branch points”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 48, no. 2, 2006, 97–108 (In Russian) | Zbl

[34] Pontryagin L. S., Ordinary Differential Equations, Nauka, Moscow, 1974, 331 pp. (In Russian)

[35] Gakhov F. D., Boundary Value Problems, Nauka, Moscow, 1977, 640 pp. (In Russian) | MR

[36] Nemytskii V. V., Stepanov V. V., Qualitative Theory of Differential Equations, GITTL, Moscow–Leningrad, 1947, 448 pp. (In Russian)