On the structure of $C^*$-algebras generated by representations of the elementary inverse semigroup
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 2, pp. 180-193 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The class of $C^*$-algebras generated by the elementary inverse semigroup and being deformations of the Toeplitz algebra has been introduced and studied. The properties of these algebras have been investigated. All their irreducible representations and automorphism groups have been described. These algebras have been proved to be $\mathbb Z$-graded $C^*$-algebras. For a certain class of algebras in the family under consideration the compact quantum semigroup structure has been constructed.
Keywords: $C^*$-algebra, Toeplitz algebra, irreducible representation, inverse semigroup, compact quantum semigroup.
Mots-clés : automorphism group
@article{UZKU_2016_158_2_a2,
     author = {S. A. Grigoryan and E. V. Lipacheva},
     title = {On the structure of $C^*$-algebras generated by representations of the elementary inverse semigroup},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {180--193},
     year = {2016},
     volume = {158},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a2/}
}
TY  - JOUR
AU  - S. A. Grigoryan
AU  - E. V. Lipacheva
TI  - On the structure of $C^*$-algebras generated by representations of the elementary inverse semigroup
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2016
SP  - 180
EP  - 193
VL  - 158
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a2/
LA  - ru
ID  - UZKU_2016_158_2_a2
ER  - 
%0 Journal Article
%A S. A. Grigoryan
%A E. V. Lipacheva
%T On the structure of $C^*$-algebras generated by representations of the elementary inverse semigroup
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2016
%P 180-193
%V 158
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a2/
%G ru
%F UZKU_2016_158_2_a2
S. A. Grigoryan; E. V. Lipacheva. On the structure of $C^*$-algebras generated by representations of the elementary inverse semigroup. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 2, pp. 180-193. http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a2/

[1] Woronowicz S. L., “Twisted $\mathrm{SU}(2)$ group. An example of non-commutative differential calculus”, Publ. RIMS, 23:1 (1987), 117–181 | DOI | MR | Zbl

[2] Woronowicz S. L., “Compact matrix pseudogroups”, Commun. Math. Phys., 111:4 (1987), 613–665 | DOI | MR | Zbl

[3] Woronowicz S. L., “Compact quantum groups”, Symmetries quantiques, North-Holland, Amsterdam, 1998, 845–884 | MR | Zbl

[4] Maes A., Van Daele A., “Notes on compact quantum groups”, Nieuw Arch. Wisk., 4:16 (1998), 73–112 | MR

[5] Aukhadiev M. A., Grigoryan S. A., Lipacheva E. V., “A compact quantum semigroup generated by an isometry”, Russ. Math. (Iz. VUZ), 55:10 (2011), 78–81 | MR | Zbl

[6] Aukhadiev M. A., Grigoryan S. A., Lipacheva E. V., “Infinite-dimensional compact quantum semigroup”, Lobachevskii J. Math., 32:4 (2011), 304–316 | DOI | MR | Zbl

[7] Aukhadiev M. A., Grigoryan S. A., Lipacheva E. V., “Operator approach to quantization of semigroups”, Sb.: Math., 205:3 (2014), 319–342 | DOI | DOI | MR | Zbl

[8] Aukhadiev M. A., Tepoyan V. H., “Isometric representations of totally ordered semigroups”, Lobachevskii J. Math., 33:3 (2012), 239–243 | DOI | MR | Zbl

[9] Grigoryan S. A., Tepoyan V. H., “On isometric representations of the perforated semigroup”, Lobachevskii J. Math., 34:1 (2013), 85–88 | DOI | MR | Zbl

[10] Tepoyan V. H., “On Isometric representations of the semigroup $\mathbb Z_+\setminus\{1\}$”, J. Contemp. Math. Anal., 48:2 (2013), 51–57 | DOI | MR

[11] Arzumanyan V. A., “Irreducible realizations of isometric”, Differential Equations and Functional Analysis, In Memory of Prof. R. Alexandrian, Yerevan State Univ., Yerevan, 1993, 227–231

[12] Coburn L. A., “The $C^*$-algebra generated by an isometry”, Bull. Am. Math. Soc., 73 (1967), 722–726 | DOI | MR | Zbl

[13] Blackadar B., Operator Algebras. Theory of $C^*$-Algebras and von Neumann Algebras, Springer-Verlag, Berlin–Heidelberg, 2006, 548 pp. | MR