Mots-clés : automorphism group
@article{UZKU_2016_158_2_a2,
author = {S. A. Grigoryan and E. V. Lipacheva},
title = {On the structure of $C^*$-algebras generated by representations of the elementary inverse semigroup},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {180--193},
year = {2016},
volume = {158},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a2/}
}
TY - JOUR AU - S. A. Grigoryan AU - E. V. Lipacheva TI - On the structure of $C^*$-algebras generated by representations of the elementary inverse semigroup JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2016 SP - 180 EP - 193 VL - 158 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a2/ LA - ru ID - UZKU_2016_158_2_a2 ER -
%0 Journal Article %A S. A. Grigoryan %A E. V. Lipacheva %T On the structure of $C^*$-algebras generated by representations of the elementary inverse semigroup %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2016 %P 180-193 %V 158 %N 2 %U http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a2/ %G ru %F UZKU_2016_158_2_a2
S. A. Grigoryan; E. V. Lipacheva. On the structure of $C^*$-algebras generated by representations of the elementary inverse semigroup. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 2, pp. 180-193. http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a2/
[1] Woronowicz S. L., “Twisted $\mathrm{SU}(2)$ group. An example of non-commutative differential calculus”, Publ. RIMS, 23:1 (1987), 117–181 | DOI | MR | Zbl
[2] Woronowicz S. L., “Compact matrix pseudogroups”, Commun. Math. Phys., 111:4 (1987), 613–665 | DOI | MR | Zbl
[3] Woronowicz S. L., “Compact quantum groups”, Symmetries quantiques, North-Holland, Amsterdam, 1998, 845–884 | MR | Zbl
[4] Maes A., Van Daele A., “Notes on compact quantum groups”, Nieuw Arch. Wisk., 4:16 (1998), 73–112 | MR
[5] Aukhadiev M. A., Grigoryan S. A., Lipacheva E. V., “A compact quantum semigroup generated by an isometry”, Russ. Math. (Iz. VUZ), 55:10 (2011), 78–81 | MR | Zbl
[6] Aukhadiev M. A., Grigoryan S. A., Lipacheva E. V., “Infinite-dimensional compact quantum semigroup”, Lobachevskii J. Math., 32:4 (2011), 304–316 | DOI | MR | Zbl
[7] Aukhadiev M. A., Grigoryan S. A., Lipacheva E. V., “Operator approach to quantization of semigroups”, Sb.: Math., 205:3 (2014), 319–342 | DOI | DOI | MR | Zbl
[8] Aukhadiev M. A., Tepoyan V. H., “Isometric representations of totally ordered semigroups”, Lobachevskii J. Math., 33:3 (2012), 239–243 | DOI | MR | Zbl
[9] Grigoryan S. A., Tepoyan V. H., “On isometric representations of the perforated semigroup”, Lobachevskii J. Math., 34:1 (2013), 85–88 | DOI | MR | Zbl
[10] Tepoyan V. H., “On Isometric representations of the semigroup $\mathbb Z_+\setminus\{1\}$”, J. Contemp. Math. Anal., 48:2 (2013), 51–57 | DOI | MR
[11] Arzumanyan V. A., “Irreducible realizations of isometric”, Differential Equations and Functional Analysis, In Memory of Prof. R. Alexandrian, Yerevan State Univ., Yerevan, 1993, 227–231
[12] Coburn L. A., “The $C^*$-algebra generated by an isometry”, Bull. Am. Math. Soc., 73 (1967), 722–726 | DOI | MR | Zbl
[13] Blackadar B., Operator Algebras. Theory of $C^*$-Algebras and von Neumann Algebras, Springer-Verlag, Berlin–Heidelberg, 2006, 548 pp. | MR