Numerical simulation of one-phase flow to multi-stage hydraulically fractured horizontal well
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 2, pp. 287-301 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper presents a method of numerical simulation of one-phase flow near multi-stage fractured horizontal well in oil reservoir. Differential models for flows within reservoir and within fractures are formulated separately on the basis of Darcy's law. Numerical approximations of these models are performed using the finite volume method. The resulting systems of linear equations are then assembled into the single system to avoid an iterative coupling of numerical solutions for problems in the reservoir and fractures. Different solution methods for coupled ill-conditioned systems of linear equations are examined.
Keywords: horizontal well, multi-stage hydraulic fracturing, algebraic multigrid method, preconditioner.
Mots-clés : one-phase filtration
@article{UZKU_2016_158_2_a10,
     author = {M. R. Khamidullin},
     title = {Numerical simulation of one-phase flow to multi-stage hydraulically fractured~horizontal well},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {287--301},
     year = {2016},
     volume = {158},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a10/}
}
TY  - JOUR
AU  - M. R. Khamidullin
TI  - Numerical simulation of one-phase flow to multi-stage hydraulically fractured horizontal well
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2016
SP  - 287
EP  - 301
VL  - 158
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a10/
LA  - ru
ID  - UZKU_2016_158_2_a10
ER  - 
%0 Journal Article
%A M. R. Khamidullin
%T Numerical simulation of one-phase flow to multi-stage hydraulically fractured horizontal well
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2016
%P 287-301
%V 158
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a10/
%G ru
%F UZKU_2016_158_2_a10
M. R. Khamidullin. Numerical simulation of one-phase flow to multi-stage hydraulically fractured horizontal well. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 2, pp. 287-301. http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a10/

[1] Shen Z., Ling K., Yip Y., “A New Method of Predicting the Well Performance of Multi-Frac Horizontal Wells”, SPE Bergen One Day Seminar (22 April 2015, Bergen, Norway), Soc. Pet. Eng., 2015, Art. No SPE-173886-MS

[2] Economides M. J., Oligney R. E., Valko P., Unified Fracture Design: Bridging the Gap between Theory and Practice, Orsa Press, Alvin Tex., 2002, 200 pp.

[3] Kanevskaya R. D., Zhuchkov S. Yu., “The experience of modelling and evaluating the efficiency of horizontal wells with hydraulic fracture cracks in the Verkhne-Shapshinskoe field”, Neft. Khoz., 2003, no. 7, 92–96 (In Russian)

[4] Raghavan R., Chen C., “Fractional diffusion in rocks produced by horizontal wells with multiple, transverse hydraulic fractures of finite conductivity”, J. Pet. Sci. Eng., 109 (2013), 133–143 | DOI

[5] Chen C. C., Raghavan R., “A multiply-fractured horizontal well in a rectangular drainage region”, Soc. Pet. Eng. J., 2:4 (1997), 455–465

[6] Badertdinova E. R., Salim'yanov I. T., Khairullin M. Kh., Shamsiev M. N., “Numerical solution of the coefficient inverse problems on nonstationary filtration to a well intersected by a hydraulic fracture”, J. Appl. Mech. Tech. Phys., 53:3 (2012), 379–383 | DOI | Zbl

[7] Salim'yanov I. T., Hydrodynamic studies of vertical oil wells with hydraulic fracture cracks, Cand. Tech. Sci. Diss., Kazan, 2011, 110 pp. (In Russian)

[8] van der Vorst H., Iterative Krylov Methods for Large Linear System, Cambridge Univ. Press, Cambridge, 2003, 236 pp. | MR

[9] Bogachev K. Yu., Effective solving of the problems of filtration of viscous compressible multiphase multicomponent mixture on parallel computers, Doct. Phys.-Math. Sci. Diss., Moscow, 2012, 183 pp. (In Russian)

[10] Stoer J., Bulirsch R., Introduction to numerical analysis, Springer, N.Y., 2002, 762 pp. | MR | Zbl

[11] Durkin S. M., Mathematical model of a well draining fractured porous reservoir, Cand. Tech. Sci. Diss., Ukhta, 2014, 150 pp. (In Russian)

[12] Kashevarov A. A., “Hydraulic model for oil and gas reserevoirs”, J. Appl. Mech. Tech. Phys., 51:6 (2010), 868–876 | DOI | MR | Zbl

[13] Friedel T., Numerical Simulation of Production from Tight Gas Reservoirs by Advanced Stimulation Technologies, Diss., Technischen Universitat Bergakademie Freiberg, Freiberg, 2004, 126 pp.

[14] Soliman M. Y., Boonen P., “Review of Fracturing Horizontal Wells Technology”, 7th Abu Dhabi International Petroleum Exhibition and Conference (Abu Dhabi, United Arab Emirates, Oct. 13–16, 1996), Soc. Petrol. Eng., 1996, Art. No SPE-36289-MS | Zbl

[15] Mazo A. B., Potashev K. A., Khamidullin M. R., “Mathematical model of fluid filtration to a multistage hydraulically fractured horizontal well”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 157, no. 4, 2015, 133–148 (In Russian)

[16] Mazo A. B., Potashev K. A., Kalinin E. I., Bulygin D. V., “Oil reservoir simulation with the supplement method”, Mat. Model., 25:8 (2013), 51–64 (In Russian) | MR

[17] Amestoy P. R., Puglisi C., “An unsymmetrized multifrontal LU factorization”, SIAM J. Matrix Anal. Appl., 24:2 (2002), 553–569 | DOI | MR | Zbl

[18] Watkins D. S., Fundamentals of Matrix Computations, John Wiley Sons, N.Y., 2004, 640 pp.

[19] Hemker P. W., “The Incomplete LU-decomposition as a relaxation method in multi-grid algorithms”, Boundary And Interior Layers – Computational and Asymptotic Methods, ed. J. J. H. Miller, Boole Press, Dublin, 1980, 306–311

[20] Wittum G., “On the robustness of ILU smoothing”, SIAM J. Sci. Stat. Comput., 10:4 (1989), 699–717 | DOI | MR | Zbl

[21] Bolten M., Multigrid Methods for Structured Grids and their Application in Particle Simulation, Diss., Bergische Universitat Wuppertal, Wuppertal, 2008, 131 pp.

[22] Ruge J. W., Stuben K., “Algebraic multigrid”, Multigrid Methods, Frontiers in Applied Mathematics, v. 3, ed. S. F. McCormick, SIAM, Philadelphia, 1987, 73–130 | DOI | MR