@article{UZKU_2016_158_2_a1,
author = {D. Kh. Giniyatova},
title = {Estimates of the hyperbolic radius gradient and {Schwarz{\textendash}Pick} inequalities for the eccentric annulus},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {172--179},
year = {2016},
volume = {158},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a1/}
}
TY - JOUR AU - D. Kh. Giniyatova TI - Estimates of the hyperbolic radius gradient and Schwarz–Pick inequalities for the eccentric annulus JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2016 SP - 172 EP - 179 VL - 158 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a1/ LA - ru ID - UZKU_2016_158_2_a1 ER -
%0 Journal Article %A D. Kh. Giniyatova %T Estimates of the hyperbolic radius gradient and Schwarz–Pick inequalities for the eccentric annulus %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2016 %P 172-179 %V 158 %N 2 %U http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a1/ %G ru %F UZKU_2016_158_2_a1
D. Kh. Giniyatova. Estimates of the hyperbolic radius gradient and Schwarz–Pick inequalities for the eccentric annulus. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 2, pp. 172-179. http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a1/
[1] Goluzin G. M., Geometric Theory of Functions of a Complex Variable, Nauka, Moscow, 1966, 628 pp. (In Russian) | MR
[2] Avkhadiev F. G., Wirths K.-J., Schwarz–Pick Type Inequalities, Birkhäuser, Boston–Berlin–Bern, 2009, 156 pp. | MR | Zbl
[3] Ruscheweyh St., “Über einige Klassen in Einheitskreis holomorpher Funktionen”, Ber. Math.-Stat. Sekt. Forschungszent. Graz., 1974, no. 7, 1–12
[4] Ruscheweyh St., “Two remarks on bounded analytic functions”, Serdica (Bulg. Math. Publ.), 11:2 (1985), 200–202 | MR | Zbl
[5] Yamashita S., “Higher derivatives of holomorphic function with positive real part”, Hokkaido Math. J., 29:1 (2000), 23–36 | DOI | MR | Zbl
[6] Avkhadiev F. G., Wirths K.-J., “Schwarz–Pick inequalities for derivatives of arbitrary order”, Constr. approx., 19:1 (2003), 265–277 | DOI | MR | Zbl
[7] Avkhadiev F. G., Wirths K.-J., “The punishing factors for convex pairs are $2^{n-1}$”, Rev. Math. Iberoam., 23:3 (2007), 847–860 | DOI | MR | Zbl
[8] Avkhadiev F. G., Wirths K.-J., “Estimates of the derivatives of meromorphic maps from convex domains into concave domains”, Comp. Methods Funct. Theory, 8:1 (2008), 107–119 | DOI | MR | Zbl
[9] Li J.-L., “Estimates for derivatives of holomorphic functions in a hyperbolic domain”, J. Math. Anal. Appl., 329:1 (2007), 581–591 | DOI | MR | Zbl
[10] Chua K. S., “Derivatives of univalent functions and the hyperbolic metric”, Rocky Mt. J. Math., 26:1 (1996), 63–75 | DOI | MR | Zbl
[11] Giniyatova D. Kh., “Generalization of theorems of Szász and Ruscheweyh on exact bounds for derivatives of analytic functions”, Russ. Math., 53:12 (2009), 72–76 | DOI | MR | Zbl
[12] Abramov D. A., Avkhadiev F. G., Giniyatova D. Kh., “Versions of the Schwarz lemma for domain moments and the torsional rigidity”, Lobachevskii J. Math., 32:2 (2011), 149–158 | DOI | MR | Zbl
[13] Avkhadiev F. G., Wirths K.-J., “Punishing factors for finitely connected domains”, Monatsh. Math., 147:2 (2006), 103–115 | DOI | MR | Zbl
[14] Avkhadiev F. G., Wirths K.-J., A theorem of Teichmüller, Uniformly Perfect Sets and Punishing Factors, Preprint, Tech. Univ. Braunschweig, Braunschweig, 2005, 16 pp.
[15] Kazantsev A. V., “Gakhov set in the Hornich space under the Bloch restriction on pre-Schwarzians”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 155, no. 2, 2013, 65–82 (In Russian) | MR | Zbl
[16] Kazantsev A. V., “On the exit out of the Gakhov set controlled by the subordination conditions”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 156, no. 1, 2014, 31–43 (In Russian) | MR
[17] Avkhadiev F. G., Wirths K.-J., “The conformal radius as a function and its gradient image”, Isr. J. Math., 145:1 (2005), 349–374 | DOI | MR | Zbl
[18] Aksentyev L. A., Akhmetova A. N., “On the gradient of the conformal radius of a plane domain”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 154, no. 1, 2012, 167–178 (In Russian) | MR
[19] Akhmetova A. N., Properties of the conformal radius and the uniqueness theorem for external inverse boundary value problems, Cand. Phys.-Math. Sci. Diss., Kazan, 2009