The Miles theorem and new particular solutions to the Taylor–Goldstein equation
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 2, pp. 156-171 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The linear stability problem of steady-state plane-parallel shear flows of a continuously stratified inviscid incompressible fluid in the gravity field between two immovable impermeable solid planes is studied in and without the Boussinesq approximation. Using the Lyapunov direct method, it is proved that these flows are absolutely unstable in the theoretical sense with respect to small plane perturbations. The applicability domain boundaries of the known necessary condition of the linear instability of steady-state plane-parallel shear flows of a continuously stratified inviscid incompressible fluid in the gravity field is strictly determined in the Boussinesq approximation and without it (Miles theorem). It is found that this theorem is, by its character, both sufficient and necessary statement with respect to some uncompleted unclosed subclasses of studied perturbations. The analytical examples are constructed with the view of illustrations of the mentioned stationary flows and small plane perturbations imposed on these flows. These perturbations are not under the Miles theorem and they increase with time irrespective of the validity of the theoretical linear stability criterion in and without the Boussinesq approximation. Therefore, the results derived earlier by other authors with the help of the method of integral relations for the linear stability problems of steady-state plane-parallel shear flows of a continuously stratified inviscid incompressible fluid demand strict description for the studied partial classes of small plane perturbations as otherwise they can be mistaken.
Keywords: ideal stratified fluid, stationary plane-parallel shear flows, stability, Lyapunov direct method, instability, a priori estimate, Miles theorem, analytical solutions, Bessel functions, Whittaker functions.
Mots-clés : Boussinesq approximation, small plane perturbations
@article{UZKU_2016_158_2_a0,
     author = {A. A. Gavrilieva and Yu. G. Gubarev and M. P. Lebedev},
     title = {The {Miles} theorem and new particular solutions to the {Taylor{\textendash}Goldstein} equation},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {156--171},
     year = {2016},
     volume = {158},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a0/}
}
TY  - JOUR
AU  - A. A. Gavrilieva
AU  - Yu. G. Gubarev
AU  - M. P. Lebedev
TI  - The Miles theorem and new particular solutions to the Taylor–Goldstein equation
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2016
SP  - 156
EP  - 171
VL  - 158
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a0/
LA  - ru
ID  - UZKU_2016_158_2_a0
ER  - 
%0 Journal Article
%A A. A. Gavrilieva
%A Yu. G. Gubarev
%A M. P. Lebedev
%T The Miles theorem and new particular solutions to the Taylor–Goldstein equation
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2016
%P 156-171
%V 158
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a0/
%G ru
%F UZKU_2016_158_2_a0
A. A. Gavrilieva; Yu. G. Gubarev; M. P. Lebedev. The Miles theorem and new particular solutions to the Taylor–Goldstein equation. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 2, pp. 156-171. http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a0/

[1] Gavrilieva A. A., Gubarev Yu. G., “Stability of steady plane-parallel shear flow of ideal stratified fluid in a gravity field”, Vestn. Sev.-Vost. Fed. Univ. im. M. K. Ammosova, 9:3 (2012), 15–21 (In Russian)

[2] Gavrilieva A. A., Gubarev Yu. G., Lebedev M. P., “Rapid approach to resolving the adequacy problem of mathematical modeling of physical phenomena by the example of solving one problem of hydrodynamic instability”, Int. J. Theor. Math. Phys., 3:4 (2013), 123–129

[3] Phillips O. M., Dynamics of the Upper Ocean, Mir, Moscow, 1969, 267 pp. (In Russian)

[4] Kozyrev O. R., Stepanyants Yu. A., “Method of integral relations in the linear theory of hydrodynamical stability”, Itogi Nauki Tekh. Ser. Mekh. Zhidk. Gaza, 25, VINITI, 1991, 3–89 (In Russian)

[5] Miles J. W., “On the stability of heterogeneous shear flows”, J. Fluid Mech., 10:4 (1961), 496–508 | DOI | MR | Zbl

[6] Howard L. N., “Note on a paper of John Miles”, J. Fluid Mech., 10:4 (1961), 509–512 | DOI | MR | Zbl

[7] Lyapunov A. M., The General Problem of the Stability of Motion, GITTL, Moscow, 1950, 472 pp. (In Russian)

[8] Chetaev N. G., Stability of Motion, GITTL, Moscow, 1955, 208 pp. (In Russian)

[9] Vladimirov V. A., “Integrals of two-dimensional motions of a perfect incompressible fluid of nonuniform density”, Fluid Dyn., 22:3 (1987), 340–343 | DOI | MR | Zbl

[10] Gubarev Yu. G., Lyapunov's Direct Method. The Stability of the State of Rest and Stationary Flows of Liquids and Gases, Palmarium Acad. Publ., Saarbrücken, 2012, 192 pp. (In Russian)

[11] Gubarev Yu. G., “Linear stability criterion for steady screw magnetohydrodynamic flows of ideal fluid”, Thermophys. Aeromech., 16:3 (2009), 407–418 | DOI

[12] Drazin F., Introduction to the Theory of Hydrodynamic Stability, FIZMATLIT, Moscow, 2005, 288 pp. (In Russian)

[13] Beitman G., Erdelyi A., Higher Transcendental Functions, v. 2, Bessel's functions, parabolic cylinder functions, orthogonal polynominals, Nauka, Moscow, 1974, 296 pp. (In Russian)

[14] Lavrent'ev M. A., Shabat B. V., Methods of the Theory of Functions of a Complex Variable, Nauka, Moscow, 1973, 749 pp. (In Russian) | MR

[15] Beitman G., Erdelyi A., Higher Transcendental Functions, v. 1, Hypergeometrical Function, Legendre Function, Nauka, Moscow, 1973, 296 pp. (In Russian)