Mots-clés : Boussinesq approximation, small plane perturbations
@article{UZKU_2016_158_2_a0,
author = {A. A. Gavrilieva and Yu. G. Gubarev and M. P. Lebedev},
title = {The {Miles} theorem and new particular solutions to the {Taylor{\textendash}Goldstein} equation},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {156--171},
year = {2016},
volume = {158},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a0/}
}
TY - JOUR AU - A. A. Gavrilieva AU - Yu. G. Gubarev AU - M. P. Lebedev TI - The Miles theorem and new particular solutions to the Taylor–Goldstein equation JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2016 SP - 156 EP - 171 VL - 158 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a0/ LA - ru ID - UZKU_2016_158_2_a0 ER -
%0 Journal Article %A A. A. Gavrilieva %A Yu. G. Gubarev %A M. P. Lebedev %T The Miles theorem and new particular solutions to the Taylor–Goldstein equation %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2016 %P 156-171 %V 158 %N 2 %U http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a0/ %G ru %F UZKU_2016_158_2_a0
A. A. Gavrilieva; Yu. G. Gubarev; M. P. Lebedev. The Miles theorem and new particular solutions to the Taylor–Goldstein equation. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 2, pp. 156-171. http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a0/
[1] Gavrilieva A. A., Gubarev Yu. G., “Stability of steady plane-parallel shear flow of ideal stratified fluid in a gravity field”, Vestn. Sev.-Vost. Fed. Univ. im. M. K. Ammosova, 9:3 (2012), 15–21 (In Russian)
[2] Gavrilieva A. A., Gubarev Yu. G., Lebedev M. P., “Rapid approach to resolving the adequacy problem of mathematical modeling of physical phenomena by the example of solving one problem of hydrodynamic instability”, Int. J. Theor. Math. Phys., 3:4 (2013), 123–129
[3] Phillips O. M., Dynamics of the Upper Ocean, Mir, Moscow, 1969, 267 pp. (In Russian)
[4] Kozyrev O. R., Stepanyants Yu. A., “Method of integral relations in the linear theory of hydrodynamical stability”, Itogi Nauki Tekh. Ser. Mekh. Zhidk. Gaza, 25, VINITI, 1991, 3–89 (In Russian)
[5] Miles J. W., “On the stability of heterogeneous shear flows”, J. Fluid Mech., 10:4 (1961), 496–508 | DOI | MR | Zbl
[6] Howard L. N., “Note on a paper of John Miles”, J. Fluid Mech., 10:4 (1961), 509–512 | DOI | MR | Zbl
[7] Lyapunov A. M., The General Problem of the Stability of Motion, GITTL, Moscow, 1950, 472 pp. (In Russian)
[8] Chetaev N. G., Stability of Motion, GITTL, Moscow, 1955, 208 pp. (In Russian)
[9] Vladimirov V. A., “Integrals of two-dimensional motions of a perfect incompressible fluid of nonuniform density”, Fluid Dyn., 22:3 (1987), 340–343 | DOI | MR | Zbl
[10] Gubarev Yu. G., Lyapunov's Direct Method. The Stability of the State of Rest and Stationary Flows of Liquids and Gases, Palmarium Acad. Publ., Saarbrücken, 2012, 192 pp. (In Russian)
[11] Gubarev Yu. G., “Linear stability criterion for steady screw magnetohydrodynamic flows of ideal fluid”, Thermophys. Aeromech., 16:3 (2009), 407–418 | DOI
[12] Drazin F., Introduction to the Theory of Hydrodynamic Stability, FIZMATLIT, Moscow, 2005, 288 pp. (In Russian)
[13] Beitman G., Erdelyi A., Higher Transcendental Functions, v. 2, Bessel's functions, parabolic cylinder functions, orthogonal polynominals, Nauka, Moscow, 1974, 296 pp. (In Russian)
[14] Lavrent'ev M. A., Shabat B. V., Methods of the Theory of Functions of a Complex Variable, Nauka, Moscow, 1973, 749 pp. (In Russian) | MR
[15] Beitman G., Erdelyi A., Higher Transcendental Functions, v. 1, Hypergeometrical Function, Legendre Function, Nauka, Moscow, 1973, 296 pp. (In Russian)