The Miles theorem and new particular solutions to the Taylor–Goldstein equation
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 2, pp. 156-171
Voir la notice du chapitre de livre provenant de la source Math-Net.Ru
The linear stability problem of steady-state plane-parallel shear flows of a continuously stratified inviscid incompressible fluid in the gravity field between two immovable impermeable solid planes is studied in and without the Boussinesq approximation. Using the Lyapunov direct method, it is proved that these flows are absolutely unstable in the theoretical sense with respect to small plane perturbations. The applicability domain boundaries of the known necessary condition of the linear instability of steady-state plane-parallel shear flows of a continuously stratified inviscid incompressible fluid in the gravity field is strictly determined in the Boussinesq approximation and without it (Miles theorem). It is found that this theorem is, by its character, both sufficient and necessary statement with respect to some uncompleted unclosed subclasses of studied perturbations. The analytical examples are constructed with the view of illustrations of the mentioned stationary flows and small plane perturbations imposed on these flows. These perturbations are not under the Miles theorem and they increase with time irrespective of the validity of the theoretical linear stability criterion in and without the Boussinesq approximation. Therefore, the results derived earlier by other authors with the help of the method of integral relations for the linear stability problems of steady-state plane-parallel shear flows of a continuously stratified inviscid incompressible fluid demand strict description for the studied partial classes of small plane perturbations as otherwise they can be mistaken.
Keywords:
ideal stratified fluid, stationary plane-parallel shear flows, stability, Lyapunov direct method, instability, a priori estimate, Miles theorem, analytical solutions, Bessel functions, Whittaker functions.
Mots-clés : Boussinesq approximation, small plane perturbations
Mots-clés : Boussinesq approximation, small plane perturbations
@article{UZKU_2016_158_2_a0,
author = {A. A. Gavrilieva and Yu. G. Gubarev and M. P. Lebedev},
title = {The {Miles} theorem and new particular solutions to the {Taylor{\textendash}Goldstein} equation},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {156--171},
publisher = {mathdoc},
volume = {158},
number = {2},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a0/}
}
TY - JOUR AU - A. A. Gavrilieva AU - Yu. G. Gubarev AU - M. P. Lebedev TI - The Miles theorem and new particular solutions to the Taylor–Goldstein equation JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2016 SP - 156 EP - 171 VL - 158 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a0/ LA - ru ID - UZKU_2016_158_2_a0 ER -
%0 Journal Article %A A. A. Gavrilieva %A Yu. G. Gubarev %A M. P. Lebedev %T The Miles theorem and new particular solutions to the Taylor–Goldstein equation %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2016 %P 156-171 %V 158 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a0/ %G ru %F UZKU_2016_158_2_a0
A. A. Gavrilieva; Yu. G. Gubarev; M. P. Lebedev. The Miles theorem and new particular solutions to the Taylor–Goldstein equation. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 2, pp. 156-171. http://geodesic.mathdoc.fr/item/UZKU_2016_158_2_a0/