Impact of a liquid cone on a plain rigid wall
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 1, pp. 117-128 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A numerical study of high-speed (with the velocity of 250 m/s) impact of a liquid cone (cone-like jet) on a plain rigid wall has been performed. The range of the angles of inclination of the cone surface to the wall corresponds to that of their variation in the process of impact on the wall of a cylindrical jet with the semi-spherical end. The direct numerical simulation has been used on the basis of the gas dynamics equations by the CIP-CUP method on the dynamically adaptive Soroban-grids without explicit tracking of the interphase boundary. It has been found that three regimes of impact are set in the examined range of the angles. At the small angles the impact with shock wave attached to the wall without liquid spreading is realized. An abrupt transition to the regime with the shock wave detached from the wall together with the radial jet of the liquid spreading on the wall takes place with increasing the angle. A smooth transition to the shockless regime with the radial liquid jet is realized with further increasing the angle.
Mots-clés : jet impact
Keywords: shock waves, near-wall jet.
@article{UZKU_2016_158_1_a8,
     author = {A. A. Aganin and T. S. Guseva},
     title = {Impact of a~liquid cone on a~plain rigid wall},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {117--128},
     year = {2016},
     volume = {158},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2016_158_1_a8/}
}
TY  - JOUR
AU  - A. A. Aganin
AU  - T. S. Guseva
TI  - Impact of a liquid cone on a plain rigid wall
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2016
SP  - 117
EP  - 128
VL  - 158
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2016_158_1_a8/
LA  - ru
ID  - UZKU_2016_158_1_a8
ER  - 
%0 Journal Article
%A A. A. Aganin
%A T. S. Guseva
%T Impact of a liquid cone on a plain rigid wall
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2016
%P 117-128
%V 158
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2016_158_1_a8/
%G ru
%F UZKU_2016_158_1_a8
A. A. Aganin; T. S. Guseva. Impact of a liquid cone on a plain rigid wall. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 1, pp. 117-128. http://geodesic.mathdoc.fr/item/UZKU_2016_158_1_a8/

[1] Rein M., “Phenomena of liquid drop impact on solid and liquid surfaces”, Fluid Dyn. Res., 12:2 (1993), 61–93 | DOI

[2] Korobkin A. A., “Asymptotic theory of liquid-solid impact”, Phil. Trans. R. Soc. Lond. A, 355 (1997), 507–522 | DOI | MR | Zbl

[3] Field J. E., “ELSI conference: invited lecture Liquid impact: theory, experiment, applications”, Wear, 233–235 (1999), 1–12 | DOI

[4] Chizhov A. V., Schmidt A. A., “Impact of a high-velocity drop on an obstacle”, J. Tech. Phys., 170:12 (2000), 18–27 (In Russian)

[5] Lesser M. B., “Analytic solutions of liquid-drop impact problems”, Proc. R. Soc. Lond. A, 377 (1981), 289–308 | DOI | MR

[6] Heymann F. J., “High-speed impact between a liquid drop and a solid surface”, J. Appl. Phys., 40:13 (1969), 5113–5122 | DOI

[7] Haller K. K., Ventikos Y.,Poulikakos D., Monkewitz P., “Computational study of high-speed liquid droplet impact”, J. App. Phys., 92:5 (2002), 2821–2828 | DOI

[8] Cook S. S., “Erosion by water-hammer”, Proc. R. Soc. Lond. A, 119 (1928), 481–488 | DOI

[9] Bowden F. P., Brunton J. H., “The deformation of solids by liquid impact at supersonic speeds”, Proc. R. Soc. Lond. A, 263 (1961), 433–450 | DOI

[10] Birkhoff G., MacDougall D. P., Pugh E. M., Taylor G., “Explosives with Lined Cavities”, J. Appl. Phys., 19:6 (1948), 563–582 | DOI

[11] Takizawa K., Yabe T., Tsugawa Y., Tezduyar T. E., Mizoe H., “Computation of free-surface flows and fluid-object interactions with the CIP method based on adaptive meshless Soroban grids”, Comput. Mech., 40:1 (2007), 167–183 | DOI | Zbl

[12] Abgrall R., Karni S., “Computations of compressible multifluids”, J. Comp. Phys., 169:2 (2001), 594–623 | DOI | MR | Zbl

[13] Yabe T., Xiao F., Utsumi T., “The constrained interpolation profile method for multiphase analysis”, J. Comput. Phys., 169:2 (2001), 556–593 | DOI | MR | Zbl

[14] Yabe T., Wang P. Y., “Unified numerical procedure for compressible and incompressible fluid”, J. Phys. Soc. Japan, 60:7 (1991), 2105–2108 | DOI | MR

[15] Aganin A. A., Guseva T. S., “A technique of computation of waves in gas and liquid based on the CIP-CUP method on dynamically adaptive Soroban grids”, Vestn. Bashk. Univ., 19:2 (2014), 368–380 (In Russian)

[16] Aganin A. A., Guseva T. S., “Numerical simulation of the dynamics of non-uniform compressible media based on the CIP-CUP method on dynamically adaptive Soroban grids”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 156, no. 2, 2014, 55–71 (In Russian)

[17] Aganin A. A., Guseva T. S., “Numerical simulation of contact interaction of compressible fluids on Eulerian grids”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 154, no. 4, 2012, 74–99 (In Russian) | MR

[18] Aganin A. A., Guseva T. S., “Computation of contact interaction of compressible fluids without explicit separation of contact boundaries”, Vestn. Bashk. Univ., 18:3 (2013), 646–661 (In Russian)