Mots-clés : convex domain.
@article{UZKU_2016_158_1_a6,
author = {B. S. Timergaliev},
title = {Generalization of the {Brunn{\textendash}Minkowski} inequality in the form of {Hadwiger}},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {90--105},
year = {2016},
volume = {158},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2016_158_1_a6/}
}
TY - JOUR AU - B. S. Timergaliev TI - Generalization of the Brunn–Minkowski inequality in the form of Hadwiger JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2016 SP - 90 EP - 105 VL - 158 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZKU_2016_158_1_a6/ LA - ru ID - UZKU_2016_158_1_a6 ER -
%0 Journal Article %A B. S. Timergaliev %T Generalization of the Brunn–Minkowski inequality in the form of Hadwiger %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2016 %P 90-105 %V 158 %N 1 %U http://geodesic.mathdoc.fr/item/UZKU_2016_158_1_a6/ %G ru %F UZKU_2016_158_1_a6
B. S. Timergaliev. Generalization of the Brunn–Minkowski inequality in the form of Hadwiger. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 1, pp. 90-105. http://geodesic.mathdoc.fr/item/UZKU_2016_158_1_a6/
[1] Lusternik L. A., “Die Brunn–Minkowskische Ungleichung fur beliebige messbare Mengen”, C. R. Acad. Sci. URSS, 8 (1935), 55–58
[2] Hadwiger H., “Konkave eikerperfunktionale und hoher tragheitsmomente”, Comment Math. Helv., 30 (1956), 285–296 | DOI | MR | Zbl
[3] Prékopa A., “Logarithmic concave measures with application to stochastic programming”, Acta Sci. Math., 32 (1971), 301–316 | MR | Zbl
[4] Leindler L., “On a certain converse of Hölder's inequality. II”, Acta Sci. Math. (Szeged), 33 (1972), 217–223 | MR | Zbl
[5] Brascamp H. J., Lieb E. H., “On extensions of the Brunn–Minkowski and Prékopa–Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation”, J. Funct. Anal., 22:4 (1976), 366–389 | DOI | MR | Zbl
[6] Borell C., “Diffusion equations and geometric inequalities”, Potential Anal., 12:1 (2000), 49–71 | DOI | MR | Zbl
[7] Gardner R. J., “The Brunn–Minkowski inequality”, Bull. Amer. Math. Soc., 39:1 (2002), 355–405 | DOI | MR | Zbl
[8] Barthe F., “The Brunn–Minkowski theorem and related geometric and functional inequalities”, Proc. Int. Congress of Mathematicians, v. 2, Eur. Math. Soc., Madrid, Spain, 2006, 1529–1546 | MR | Zbl
[9] Keady G., “On a Brunn–Minkowski theorem for a geometric domain functional considered by Avhadiev”, J. Inequal. Pure Appl. Math., 8:2 (2007), Art. 33, 4 pp. | MR
[10] Avkhadiev F. G., “Solution of the generalized Saint Venant problem”, Mat. Sb., 189:12 (1998), 3–12 (In Russian) | DOI | MR | Zbl
[11] Avkhadiev F. G., Timergaliev B. S., “Brunn–Minkowski type inequalities for conformal and Euclidean moments of domains”, Izv. VUZov Mat., 2014, no. 5, 64–67 (In Russian) | Zbl
[12] Figalli A., Maggi F., Pratelli A., “A refined Brunn–Minkowski inequality for convex sets”, Ann. Inst. H. Poincare Anal. Non Lineaire, 26:6 (2009), 2511–2519 | DOI | MR | Zbl
[13] Gardner R. J., Zvavitch A., “Gaussian Brunn–Minkowski inequalities”, Trans. Amer. Math. Soc., 362:10 (2010), 5333–5353 | DOI | MR | Zbl
[14] Lv S., “Dual Brunn–Minkowski inequality for volume differences”, Geom. Dedicata, 145:1 (2010), 169–180 | DOI | MR | Zbl
[15] Yamabe H., Yujobo Z., “On the continuous function defined on a sphere”, Osaka Math. J., 2:1 (1950), 19–22 | MR | Zbl