Generalization of the Brunn–Minkowski inequality in the form of Hadwiger
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 1, pp. 90-105 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A class of domain functionals has been built in the Euclidean space. The Brunn–Minkowski type of inequality has been applied to the said class and proved for it. Functional building has been performed using the point of minimum of function of n variables bound with functionals, proof of existence of which is the important part of the proposed research. We have introduced special cases of functionals for which the point of minimum can be found explicitly. The resulting Brunn–Minkowski type of inequality generalizes the corresponding inequality for moments of inertia in relation to the center of mass and hyperplanes proven by H. Hadwiger. It is worth mentioning that the point of minimum of functional in general case does not coincide with the center of mass. Coincidence occurs only in special cases, which is proven by the particular examples in this study.
Keywords: Brunn–Minkowski inequality, Prékopa–Leindler inequality, concave functional
Mots-clés : convex domain.
@article{UZKU_2016_158_1_a6,
     author = {B. S. Timergaliev},
     title = {Generalization of the {Brunn{\textendash}Minkowski} inequality in the form of {Hadwiger}},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {90--105},
     year = {2016},
     volume = {158},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2016_158_1_a6/}
}
TY  - JOUR
AU  - B. S. Timergaliev
TI  - Generalization of the Brunn–Minkowski inequality in the form of Hadwiger
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2016
SP  - 90
EP  - 105
VL  - 158
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2016_158_1_a6/
LA  - ru
ID  - UZKU_2016_158_1_a6
ER  - 
%0 Journal Article
%A B. S. Timergaliev
%T Generalization of the Brunn–Minkowski inequality in the form of Hadwiger
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2016
%P 90-105
%V 158
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2016_158_1_a6/
%G ru
%F UZKU_2016_158_1_a6
B. S. Timergaliev. Generalization of the Brunn–Minkowski inequality in the form of Hadwiger. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 1, pp. 90-105. http://geodesic.mathdoc.fr/item/UZKU_2016_158_1_a6/

[1] Lusternik L. A., “Die Brunn–Minkowskische Ungleichung fur beliebige messbare Mengen”, C. R. Acad. Sci. URSS, 8 (1935), 55–58

[2] Hadwiger H., “Konkave eikerperfunktionale und hoher tragheitsmomente”, Comment Math. Helv., 30 (1956), 285–296 | DOI | MR | Zbl

[3] Prékopa A., “Logarithmic concave measures with application to stochastic programming”, Acta Sci. Math., 32 (1971), 301–316 | MR | Zbl

[4] Leindler L., “On a certain converse of Hölder's inequality. II”, Acta Sci. Math. (Szeged), 33 (1972), 217–223 | MR | Zbl

[5] Brascamp H. J., Lieb E. H., “On extensions of the Brunn–Minkowski and Prékopa–Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation”, J. Funct. Anal., 22:4 (1976), 366–389 | DOI | MR | Zbl

[6] Borell C., “Diffusion equations and geometric inequalities”, Potential Anal., 12:1 (2000), 49–71 | DOI | MR | Zbl

[7] Gardner R. J., “The Brunn–Minkowski inequality”, Bull. Amer. Math. Soc., 39:1 (2002), 355–405 | DOI | MR | Zbl

[8] Barthe F., “The Brunn–Minkowski theorem and related geometric and functional inequalities”, Proc. Int. Congress of Mathematicians, v. 2, Eur. Math. Soc., Madrid, Spain, 2006, 1529–1546 | MR | Zbl

[9] Keady G., “On a Brunn–Minkowski theorem for a geometric domain functional considered by Avhadiev”, J. Inequal. Pure Appl. Math., 8:2 (2007), Art. 33, 4 pp. | MR

[10] Avkhadiev F. G., “Solution of the generalized Saint Venant problem”, Mat. Sb., 189:12 (1998), 3–12 (In Russian) | DOI | MR | Zbl

[11] Avkhadiev F. G., Timergaliev B. S., “Brunn–Minkowski type inequalities for conformal and Euclidean moments of domains”, Izv. VUZov Mat., 2014, no. 5, 64–67 (In Russian) | Zbl

[12] Figalli A., Maggi F., Pratelli A., “A refined Brunn–Minkowski inequality for convex sets”, Ann. Inst. H. Poincare Anal. Non Lineaire, 26:6 (2009), 2511–2519 | DOI | MR | Zbl

[13] Gardner R. J., Zvavitch A., “Gaussian Brunn–Minkowski inequalities”, Trans. Amer. Math. Soc., 362:10 (2010), 5333–5353 | DOI | MR | Zbl

[14] Lv S., “Dual Brunn–Minkowski inequality for volume differences”, Geom. Dedicata, 145:1 (2010), 169–180 | DOI | MR | Zbl

[15] Yamabe H., Yujobo Z., “On the continuous function defined on a sphere”, Osaka Math. J., 2:1 (1950), 19–22 | MR | Zbl