Numerical solution of a parabolic optimal control problem with point-wise state constraints
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 1, pp. 81-89
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of optimal control over the system governed by the Dirichlet boundary value problem for a linear parabolic equation is constructed. Point-wise constraints are imposed on both control and state functions. The right-hand side of the equation is a control function in the problem. The objective functional contains an observation which is distributed in the space-time domain. Finite-difference approximation is constructed for the optimal control problem based on the Euler forward scheme for the state parabolic equation. The existence of its unique solution is proved. Constrained saddle point problem corresponding to the mesh optimal control problem is constructed. The existence of a solution for this saddle point problem and the convergence of the generalized Uzawa iterative method are proved. The results of numerical experiments are given.
Keywords: optimal control, parabolic state equation, state constraints, finite-difference approximation, iterative method.
@article{UZKU_2016_158_1_a5,
     author = {A. V. Lapin and A. A. Platonov},
     title = {Numerical solution of a~parabolic optimal control problem with point-wise state constraints},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {81--89},
     year = {2016},
     volume = {158},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2016_158_1_a5/}
}
TY  - JOUR
AU  - A. V. Lapin
AU  - A. A. Platonov
TI  - Numerical solution of a parabolic optimal control problem with point-wise state constraints
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2016
SP  - 81
EP  - 89
VL  - 158
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2016_158_1_a5/
LA  - ru
ID  - UZKU_2016_158_1_a5
ER  - 
%0 Journal Article
%A A. V. Lapin
%A A. A. Platonov
%T Numerical solution of a parabolic optimal control problem with point-wise state constraints
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2016
%P 81-89
%V 158
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2016_158_1_a5/
%G ru
%F UZKU_2016_158_1_a5
A. V. Lapin; A. A. Platonov. Numerical solution of a parabolic optimal control problem with point-wise state constraints. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 1, pp. 81-89. http://geodesic.mathdoc.fr/item/UZKU_2016_158_1_a5/

[1] Dautov R., Kadyrov R., Laitinen E., Lapin A., Pieskä J., Toivonen V., “On 3D-dynamic control of secondary cooling in continuous casting process”, Lobachevskii J. Math., 13 (2003), 3–13 | MR | Zbl

[2] Gunzburger M., Ozugurlu E., Turner J., Zhang H., “Controlling transport phenomena in the Czochralski crystal growth process”, J. Cryst. Growth, 234:1 (2002), 47–62 | DOI

[3] Clever D., Lang J., “Optimal control of radiative heat transfer in glass cooling with restrictions on the temperature gradient”, Optim. Control Appl. Methods, 33:2 (2012), 157–175 | DOI | MR | Zbl

[4] Ekland I., Temam R., Convex Analysis and Variational Problems, Mir, Moscow, 1979, 400 pp. (In Russian) | MR

[5] Lions J.-L., Optimal control of systems governed by partial differential equations, Springer-Verlag, Berlin–Heidelberg, 1971, 412 pp. | MR | Zbl

[6] Deckelnick K., Hinze M., “Variational discretization of parabolic control problems in the presence of pointwise state constraints”, J. Comp. Math., 29:1 (2011), 1–15 | MR | Zbl

[7] Neitzel I., Troltzsch F., “On regularization methods for the numerical solution of parabolic control problems with pointwise state constraints”, ESAIM: Control, Optimisation and Calculus of Variations, 15 (2009), 426–453 | DOI | MR | Zbl

[8] Lapin A., Platonov A., Romanenko A., “Solving a parabolic optimal control problem with state constraints by using explicit approximation of the state”, Proc. 10th Int. Conf. “Mesh Methods for Boundary-Value Problems and Applications”, Izd. Kazan. Univ., Kazan, 2014, 444–447 (In Russian)

[9] Lapin A., Laitinen E., “Iterative solution methods for parabolic optimal control problem with constraints on time derivative of state function”, WSEAS Recent Advances in Mathematics: Mathematics and Computers in Science and Engineering Series, 48 (2015), 72–74

[10] Laitinen E., Lapin A., Lapin S., “Explicit algorithms to solve a class of state constrained parabolic optimal control problems”, Russ. J. Numer. Analysis Math. Modeling, 30:6 (2015), 351–362 | MR | Zbl

[11] Lapin A., “Preconditioned Uzawa type methods for finite-dimensional constrained saddle point problems”, Lobachevskii J. Math., 31:4 (2010), 309–322 | DOI | MR | Zbl

[12] Laitinen E., Lapin A., Lapin S., “On the iterative solution of finite-dimensional inclusions with applications to optimal control problems”, Comput. Methods Appl. Math., 10:3 (2010), 283–301 | DOI | MR | Zbl

[13] Lapin A., Khasanov M., “State-constrained optimal control of an elliptic equation with its right-hand side used as control function”, Lobachevskii J. Math., 32:4 (2011), 453–462 | DOI | MR | Zbl

[14] Laitinen E., Lapin A., “Iterative solution methods for a class of state constrained optimal control problems”, Appl. Math., 3:12 (2012), 1862–1867 | DOI

[15] Laitinen E., Lapin A., “Iterative solution methods for the large-scale constrained saddle point problems”, Numerical methods for differential equations, optimization, and technological problems, Springer, 2013, 19–39 | DOI | MR | Zbl

[16] Lapin A., Khasanov M., “Iterative solution methods for mesh approximation of control and state constrained optimal control problem with observation in a part of the domain”, Lobachevskii J. Math., 35:3 (2014), 241–258 | DOI | MR | Zbl

[17] Quarteroni A., Valli A., Numerical approximation of partial differential equations, Springer-Verlag, Berlin–Heidelberg, 1997, 560 pp.