Mots-clés : Löwner–Kufarev equation
@article{UZKU_2016_158_1_a4,
author = {A. V. Kazantsev},
title = {On the families of hyperbolic derivatives with the {quasi-L\"owner} dynamics of {pre-Schwarzians}},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {66--80},
year = {2016},
volume = {158},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2016_158_1_a4/}
}
TY - JOUR AU - A. V. Kazantsev TI - On the families of hyperbolic derivatives with the quasi-Löwner dynamics of pre-Schwarzians JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2016 SP - 66 EP - 80 VL - 158 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZKU_2016_158_1_a4/ LA - ru ID - UZKU_2016_158_1_a4 ER -
%0 Journal Article %A A. V. Kazantsev %T On the families of hyperbolic derivatives with the quasi-Löwner dynamics of pre-Schwarzians %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2016 %P 66-80 %V 158 %N 1 %U http://geodesic.mathdoc.fr/item/UZKU_2016_158_1_a4/ %G ru %F UZKU_2016_158_1_a4
A. V. Kazantsev. On the families of hyperbolic derivatives with the quasi-Löwner dynamics of pre-Schwarzians. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 1, pp. 66-80. http://geodesic.mathdoc.fr/item/UZKU_2016_158_1_a4/
[1] Kazantsev A. V., “Bifurcations and new uniqueness criteria for critical points of hyperbolic derivatives”, Lobachevskii J. Math., 32:4 (2011), 426–437 | DOI | MR | MR | Zbl | Zbl
[2] Kazantsev A. V., “On the exit out of the Gakhov set controlled by the subordination conditions”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 156, no. 1, 2014, 31–43 (In Russian)
[3] Kazantsev A. V., “On the inner radius for infinite domains”, Tr. Semin. Kraev. Zadacham, 27, Kazan. Gos. Univ., Kazan, 1992, 63–67 (In Russian) | MR | Zbl
[4] Kazantsev A. V., “On the Gakhov equation in the Janowski classes with additional parameter”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 157, no. 1, 2015, 35–43 (In Russian)
[5] Aksent'ev L. A., Kazantsev A. V., Kiselev A. V., “Uniqueness of the solution of an exterior inverse boundary value problem”, Izv. VUZov, Mat., 1984, no. 10, 8–18 (In Russian) | MR | Zbl
[6] Kazantsev A. V., Extremal properties of inner radii and their applications, Cand. Phys.–Math. Sci. Diss., Kazan, 1990., 145 pp. (In Russian)
[7] Aksent'ev L. A., Kazantsev A. V., Kinder M. I., Kiselev A. V., “Classes of uniqueness of an exterior inverse boundary value problem”, Tr. Semin. Kraev. Zadacham, 24, Kazan. Gos. Univ., Kazan, 1990, 39–62 (In Russian) | MR
[8] Kazantsev A. V., “Bifurcations of roots of the Gakhov equation with a Loewner left-hand side”, Izv. VUZov, Mat., 1993, no. 6, 69–73 (In Russian) | MR | Zbl
[9] Kazantsev A. V., “Parametric families of inner mapping radii”, 2nd European Congr. Math. (Budapest, July 22–26, 1996), Abstracts, János Bolyai Math. Soc., Budapest, 1996, 30
[10] Kazantsev A. V., “Hyperbolic derivatives with pre-Schwarzians from the Bloch space”, Tr. Mat. Tsentra im. N. I. Lobachevskogo, 14, Kazan. Mat. O-vo, Kazan, 2002, 135–144 (In Russian) | MR | Zbl
[11] Haegi H. R., “Extremalprobleme und Ungleichungen konformer Gebietsgrössen”, Compositio Math., 8:2 (1950), 81–111 | MR | Zbl
[12] Gakhov F. D., “On inverse boundary-value problems”, Dokl. Akad. Nauk SSSR, 86:4 (1952), 649–652 (In Russian) | Zbl
[13] Aksent'ev L. A., “The connection of the exterior inverse boundary value problem with the inner radius of the domain”, Izv. VUZov, Mat., 1984, no. 2, 3–11 (In Russian) | MR | Zbl
[14] Kazantsev A. V., “Gakhov set in the Hornich space under the Bloch restriction on pre-Schwarzians”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 155, no. 2, 2013, 65–82 (In Russian)
[15] Kazantsev A. V., Four Etudes on a Theme of F. D. Gakhov, Marii. Gos. Univ., Yoshkar-Ola, 2012, 64 pp. (In Russian)
[16] Goluzin G. M., Geometric Theory of Functions of a Complex Variable, Nauka, Moscow, 1966, 628 pp. (In Russian) | MR
[17] Chirka E. M., Complex Analytic Sets, Nauka, Moscow, 1985, 272 pp. (In Russian) | MR
[18] Golubev V. V., Lectures on Analytical Theory of Differential Equations, GITTL, Moscow–Leningrad, 1950, 436 pp. (In Russian)
[19] Markushevich A. I., Theory of Analytic Functions, v. 2, Further construction of the theory, Nauka, Moscow, 1968, 624 pp. (In Russian)
[20] Nevanlinna R., Uniformization, Inostr. Lit., Moscow, 1955, 436 pp. (In Russian)
[21] Valiron Zh., Analytic Functions, Gostekhizdat, Moscow, 1957, 235 pp. (In Russian)
[22] Forster O., Riemann Surfaces, Mir, Moscow, 1980, 248 pp. (In Russian) | MR
[23] Ruscheweyh St., Sheil-Small T., “Hadamard products of schlicht functions and the Polya–Schoenberg conjecture”, Comment. Math. Helv., 48 (1973), 119–136 | DOI | MR
[24] Marx A., “Untersuchungen über schlichte Abbildungen”, Math. Ann., 107 (1932), 40–67 | DOI | MR | Zbl
[25] Strohhäcker E., “Beiträge zur Theorie der schlichten Funktionen”, Math. Z., 37 (1933), 356–380 | DOI | MR | Zbl
[26] Kazantsev A. V., Classics of Schlicht Functions: Marx–Strohhäcker Theorem, Otechestvo, Kazan, 2013, 142 pp. (In Russian)
[27] Ruscheweyh St., Wirths K.-J., “On extreme Bloch functions with prescribed critical points”, Math. Z., 180 (1982), 91–106 | DOI | MR