On the families of hyperbolic derivatives with the quasi-Löwner dynamics of pre-Schwarzians
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 1, pp. 66-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The dynamics of the critical point set for the hyperbolic derivatives of the family of holomorphic functions in the unit disk with pre-Schwarzians satisfying the equation of the quasi-Löwner type is studied. In order to solve the corresponding Gakhov equation, we use the uniformization depending on the additional parameter and based on the Weierstraß preparation theorem and the Painlevé uniqueness theorem for the Cauchy problem. The action of two well-known (quasi-Löwner) families, level lines, and Hornich rays is demonstrated on the same generating function. The choice of the new form of the Gakhov equation leads to the new condition for (no more than) uniqueness of the critical point of the hyperbolic derivative of the holomorphic function – non-positivity of the Jacobian equation in terms of the pre-Schwarzian of the function. The resulting inequality is satisfied by the functions of the well-known Marx–Strohhacker class.
Keywords: hyperbolic derivative, inner mapping radius, Gakhov equation, starlike functions.
Mots-clés : Löwner–Kufarev equation
@article{UZKU_2016_158_1_a4,
     author = {A. V. Kazantsev},
     title = {On the families of hyperbolic derivatives with the {quasi-L\"owner} dynamics of {pre-Schwarzians}},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {66--80},
     year = {2016},
     volume = {158},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2016_158_1_a4/}
}
TY  - JOUR
AU  - A. V. Kazantsev
TI  - On the families of hyperbolic derivatives with the quasi-Löwner dynamics of pre-Schwarzians
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2016
SP  - 66
EP  - 80
VL  - 158
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2016_158_1_a4/
LA  - ru
ID  - UZKU_2016_158_1_a4
ER  - 
%0 Journal Article
%A A. V. Kazantsev
%T On the families of hyperbolic derivatives with the quasi-Löwner dynamics of pre-Schwarzians
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2016
%P 66-80
%V 158
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2016_158_1_a4/
%G ru
%F UZKU_2016_158_1_a4
A. V. Kazantsev. On the families of hyperbolic derivatives with the quasi-Löwner dynamics of pre-Schwarzians. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 1, pp. 66-80. http://geodesic.mathdoc.fr/item/UZKU_2016_158_1_a4/

[1] Kazantsev A. V., “Bifurcations and new uniqueness criteria for critical points of hyperbolic derivatives”, Lobachevskii J. Math., 32:4 (2011), 426–437 | DOI | MR | MR | Zbl | Zbl

[2] Kazantsev A. V., “On the exit out of the Gakhov set controlled by the subordination conditions”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 156, no. 1, 2014, 31–43 (In Russian)

[3] Kazantsev A. V., “On the inner radius for infinite domains”, Tr. Semin. Kraev. Zadacham, 27, Kazan. Gos. Univ., Kazan, 1992, 63–67 (In Russian) | MR | Zbl

[4] Kazantsev A. V., “On the Gakhov equation in the Janowski classes with additional parameter”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 157, no. 1, 2015, 35–43 (In Russian)

[5] Aksent'ev L. A., Kazantsev A. V., Kiselev A. V., “Uniqueness of the solution of an exterior inverse boundary value problem”, Izv. VUZov, Mat., 1984, no. 10, 8–18 (In Russian) | MR | Zbl

[6] Kazantsev A. V., Extremal properties of inner radii and their applications, Cand. Phys.–Math. Sci. Diss., Kazan, 1990., 145 pp. (In Russian)

[7] Aksent'ev L. A., Kazantsev A. V., Kinder M. I., Kiselev A. V., “Classes of uniqueness of an exterior inverse boundary value problem”, Tr. Semin. Kraev. Zadacham, 24, Kazan. Gos. Univ., Kazan, 1990, 39–62 (In Russian) | MR

[8] Kazantsev A. V., “Bifurcations of roots of the Gakhov equation with a Loewner left-hand side”, Izv. VUZov, Mat., 1993, no. 6, 69–73 (In Russian) | MR | Zbl

[9] Kazantsev A. V., “Parametric families of inner mapping radii”, 2nd European Congr. Math. (Budapest, July 22–26, 1996), Abstracts, János Bolyai Math. Soc., Budapest, 1996, 30

[10] Kazantsev A. V., “Hyperbolic derivatives with pre-Schwarzians from the Bloch space”, Tr. Mat. Tsentra im. N. I. Lobachevskogo, 14, Kazan. Mat. O-vo, Kazan, 2002, 135–144 (In Russian) | MR | Zbl

[11] Haegi H. R., “Extremalprobleme und Ungleichungen konformer Gebietsgrössen”, Compositio Math., 8:2 (1950), 81–111 | MR | Zbl

[12] Gakhov F. D., “On inverse boundary-value problems”, Dokl. Akad. Nauk SSSR, 86:4 (1952), 649–652 (In Russian) | Zbl

[13] Aksent'ev L. A., “The connection of the exterior inverse boundary value problem with the inner radius of the domain”, Izv. VUZov, Mat., 1984, no. 2, 3–11 (In Russian) | MR | Zbl

[14] Kazantsev A. V., “Gakhov set in the Hornich space under the Bloch restriction on pre-Schwarzians”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 155, no. 2, 2013, 65–82 (In Russian)

[15] Kazantsev A. V., Four Etudes on a Theme of F. D. Gakhov, Marii. Gos. Univ., Yoshkar-Ola, 2012, 64 pp. (In Russian)

[16] Goluzin G. M., Geometric Theory of Functions of a Complex Variable, Nauka, Moscow, 1966, 628 pp. (In Russian) | MR

[17] Chirka E. M., Complex Analytic Sets, Nauka, Moscow, 1985, 272 pp. (In Russian) | MR

[18] Golubev V. V., Lectures on Analytical Theory of Differential Equations, GITTL, Moscow–Leningrad, 1950, 436 pp. (In Russian)

[19] Markushevich A. I., Theory of Analytic Functions, v. 2, Further construction of the theory, Nauka, Moscow, 1968, 624 pp. (In Russian)

[20] Nevanlinna R., Uniformization, Inostr. Lit., Moscow, 1955, 436 pp. (In Russian)

[21] Valiron Zh., Analytic Functions, Gostekhizdat, Moscow, 1957, 235 pp. (In Russian)

[22] Forster O., Riemann Surfaces, Mir, Moscow, 1980, 248 pp. (In Russian) | MR

[23] Ruscheweyh St., Sheil-Small T., “Hadamard products of schlicht functions and the Polya–Schoenberg conjecture”, Comment. Math. Helv., 48 (1973), 119–136 | DOI | MR

[24] Marx A., “Untersuchungen über schlichte Abbildungen”, Math. Ann., 107 (1932), 40–67 | DOI | MR | Zbl

[25] Strohhäcker E., “Beiträge zur Theorie der schlichten Funktionen”, Math. Z., 37 (1933), 356–380 | DOI | MR | Zbl

[26] Kazantsev A. V., Classics of Schlicht Functions: Marx–Strohhäcker Theorem, Otechestvo, Kazan, 2013, 142 pp. (In Russian)

[27] Ruscheweyh St., Wirths K.-J., “On extreme Bloch functions with prescribed critical points”, Math. Z., 180 (1982), 91–106 | DOI | MR