Voir la notice du chapitre de livre
Mots-clés : large gradients, polynomial interpolation
@article{UZKU_2016_158_1_a2,
author = {A. I. Zadorin and N. A. Zadorin},
title = {Polynomial interpolation of the function of two variables with large gradients in the boundary layers},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {40--50},
year = {2016},
volume = {158},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2016_158_1_a2/}
}
TY - JOUR AU - A. I. Zadorin AU - N. A. Zadorin TI - Polynomial interpolation of the function of two variables with large gradients in the boundary layers JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2016 SP - 40 EP - 50 VL - 158 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZKU_2016_158_1_a2/ LA - ru ID - UZKU_2016_158_1_a2 ER -
%0 Journal Article %A A. I. Zadorin %A N. A. Zadorin %T Polynomial interpolation of the function of two variables with large gradients in the boundary layers %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2016 %P 40-50 %V 158 %N 1 %U http://geodesic.mathdoc.fr/item/UZKU_2016_158_1_a2/ %G ru %F UZKU_2016_158_1_a2
A. I. Zadorin; N. A. Zadorin. Polynomial interpolation of the function of two variables with large gradients in the boundary layers. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 1, pp. 40-50. http://geodesic.mathdoc.fr/item/UZKU_2016_158_1_a2/
[1] Il'in A. M., “Differencing scheme for a differential equation with a small parameter affecting the highest derivative”, Math. Notes Acad. Sci. USSR, 6:2 (1969), 596–602 | DOI | MR | Zbl
[2] Bakhvalov N. S., “The optimization of the methods of solving boundary value problems in the presence of a boundary layer”, Comput. Math. Math. Phys., 9:4 (1969), 139–166 | DOI | MR | Zbl
[3] Zadorin A. I., “Method of interpolation for a boundary layer problem”, Sib. Zh. Vychisl. Mat., 10:3 (2007), 267–275 (In Russian)
[4] Zadorin A. I., Zadorin N. A., “Spline interpolation on a uniform grid for functions with a boundary-layer component”, Comput. Math. Math. Phys., 50:2 (2010), 211–223 | DOI | MR | Zbl
[5] Zadorin A. I., Zadorin N. A., “Interpolation formula for functions with a boundary layer component and its application to derivatives calculation”, Sib. Electron. Math. Izv., 9 (2012), 445–455 | MR | Zbl
[6] Zadorin A. I., “Lagrange interpolation and Newton–Cotes formulas for functions with boundary layer components on piecewise-uniform grids”, Numer. Anal. Appl., 8:3 (2015), 235–247 | DOI | DOI
[7] Shishkin G. I., Grid Approximations of Singularly Perturbed Elliptic and Parabolic Equations, Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 1992, 233 pp. (In Russian)
[8] Zadorin A. I., “Interpolation of the function of two variables with large gradients in the boundary layers”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 157, no. 2, 2015, 55–67 (In Russian)
[9] Linß T., Stynes M., “Asymptotic analysis and Shishkin-type decomposition for an elliptic convection-diffusion problem”, J. Math. Anal. Appl., 261:2 (2001), 604–632 | DOI | MR | Zbl
[10] Il'in V. P., Numerical Analysis, Pt. 1, Izd. Inst. Vychisl. Mat. Mat. Geofiz. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2004, 337 pp. (In Russian)
[11] Kornev A. A., Chizhonkov E. V., Exercises in Numerical Methods, Pt. 2, Mosk. Gos. Univ., Moscow, 2003, 200 pp. (In Russian)