Polynomial interpolation of the function of two variables with large gradients in the boundary layers
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 1, pp. 40-50
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of interpolation of the function of two variables with large gradients in the boundary layers is investigated. It is assumed that the function has large gradients near the boundaries of a rectangular domain. Such function corresponds to the solution of the elliptic equation with a small parameter in the highest derivatives. It is known that the error of polynomial interpolation on a uniform grid for the function can be of the order of $O(1)$. It is suggested to use the two-dimensional Lagrange interpolation on the piecewise uniform Shishkin mesh, which is dense in the boundary layers. The Lagrange polynomial with $k_1$ interpolation nodes on $x$ and with $k_2$ interpolation nodes on $y$ is used. The error estimate which is uniform in the small parameter is obtained. Results of the numerical experiments are discussed.
Keywords: function of two variables, Shishkin mesh, error estimate.
Mots-clés : large gradients, polynomial interpolation
@article{UZKU_2016_158_1_a2,
     author = {A. I. Zadorin and N. A. Zadorin},
     title = {Polynomial interpolation of the function of two variables with large gradients in the boundary layers},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {40--50},
     year = {2016},
     volume = {158},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2016_158_1_a2/}
}
TY  - JOUR
AU  - A. I. Zadorin
AU  - N. A. Zadorin
TI  - Polynomial interpolation of the function of two variables with large gradients in the boundary layers
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2016
SP  - 40
EP  - 50
VL  - 158
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2016_158_1_a2/
LA  - ru
ID  - UZKU_2016_158_1_a2
ER  - 
%0 Journal Article
%A A. I. Zadorin
%A N. A. Zadorin
%T Polynomial interpolation of the function of two variables with large gradients in the boundary layers
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2016
%P 40-50
%V 158
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2016_158_1_a2/
%G ru
%F UZKU_2016_158_1_a2
A. I. Zadorin; N. A. Zadorin. Polynomial interpolation of the function of two variables with large gradients in the boundary layers. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 1, pp. 40-50. http://geodesic.mathdoc.fr/item/UZKU_2016_158_1_a2/

[1] Il'in A. M., “Differencing scheme for a differential equation with a small parameter affecting the highest derivative”, Math. Notes Acad. Sci. USSR, 6:2 (1969), 596–602 | DOI | MR | Zbl

[2] Bakhvalov N. S., “The optimization of the methods of solving boundary value problems in the presence of a boundary layer”, Comput. Math. Math. Phys., 9:4 (1969), 139–166 | DOI | MR | Zbl

[3] Zadorin A. I., “Method of interpolation for a boundary layer problem”, Sib. Zh. Vychisl. Mat., 10:3 (2007), 267–275 (In Russian)

[4] Zadorin A. I., Zadorin N. A., “Spline interpolation on a uniform grid for functions with a boundary-layer component”, Comput. Math. Math. Phys., 50:2 (2010), 211–223 | DOI | MR | Zbl

[5] Zadorin A. I., Zadorin N. A., “Interpolation formula for functions with a boundary layer component and its application to derivatives calculation”, Sib. Electron. Math. Izv., 9 (2012), 445–455 | MR | Zbl

[6] Zadorin A. I., “Lagrange interpolation and Newton–Cotes formulas for functions with boundary layer components on piecewise-uniform grids”, Numer. Anal. Appl., 8:3 (2015), 235–247 | DOI | DOI

[7] Shishkin G. I., Grid Approximations of Singularly Perturbed Elliptic and Parabolic Equations, Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 1992, 233 pp. (In Russian)

[8] Zadorin A. I., “Interpolation of the function of two variables with large gradients in the boundary layers”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 157, no. 2, 2015, 55–67 (In Russian)

[9] Linß T., Stynes M., “Asymptotic analysis and Shishkin-type decomposition for an elliptic convection-diffusion problem”, J. Math. Anal. Appl., 261:2 (2001), 604–632 | DOI | MR | Zbl

[10] Il'in V. P., Numerical Analysis, Pt. 1, Izd. Inst. Vychisl. Mat. Mat. Geofiz. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2004, 337 pp. (In Russian)

[11] Kornev A. A., Chizhonkov E. V., Exercises in Numerical Methods, Pt. 2, Mosk. Gos. Univ., Moscow, 2003, 200 pp. (In Russian)