Mots-clés : Lame equations
@article{UZKU_2016_158_1_a1,
author = {A. V. Anufrieva and E. V. Rung and D. N. Tumakov},
title = {Application of the method of summation identities in solving a~boundary-value problem for the {Lame} equations},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {26--39},
year = {2016},
volume = {158},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2016_158_1_a1/}
}
TY - JOUR AU - A. V. Anufrieva AU - E. V. Rung AU - D. N. Tumakov TI - Application of the method of summation identities in solving a boundary-value problem for the Lame equations JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2016 SP - 26 EP - 39 VL - 158 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZKU_2016_158_1_a1/ LA - ru ID - UZKU_2016_158_1_a1 ER -
%0 Journal Article %A A. V. Anufrieva %A E. V. Rung %A D. N. Tumakov %T Application of the method of summation identities in solving a boundary-value problem for the Lame equations %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2016 %P 26-39 %V 158 %N 1 %U http://geodesic.mathdoc.fr/item/UZKU_2016_158_1_a1/ %G ru %F UZKU_2016_158_1_a1
A. V. Anufrieva; E. V. Rung; D. N. Tumakov. Application of the method of summation identities in solving a boundary-value problem for the Lame equations. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 1, pp. 26-39. http://geodesic.mathdoc.fr/item/UZKU_2016_158_1_a1/
[1] Anufrieva A. V., Tumakov D. N., Kipot V. L., “Peculiarities of propagation of a plane elastic wave through a gradient layer”, Days on Diffraction (DD), St. Petersburg, 2013, 11–16
[2] Anufrieva A. V., Tumakov D. N., “Diffraction of a plane elastic wave by a gradient layer”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 154, no. 4, 2012, 116–125 (In Russian) | MR
[3] Anufrieva A. V., Tumakov D. N., “Diffraction of a plane elastic wave by a gradient transversely isotropic layer”, Advances in Acoustics and Vibration, 2013 (2013), Art. 262067, 8 pp. | DOI
[4] Khoei A. R., Extended Finite Element Method: Theory and Applications, Wiley, 2015, 584 pp. | Zbl
[5] Dautov R. Z., Karchevskii M. M., An Introduction to the Theory of the Finite Element Method, Kazan, Izd. Kazan. Univ., 2011, 240 pp. (In Russian)
[6] S'jarle F., The Finite-Element Method for Elliptic Problems, Mir, Moscow, 1980, 512 pp. (In Russian) | MR
[7] Streng G., Fiks G., Theory of the Finite Element Method, Mir, Moscow, 1977, 351 pp. (In Russian) | MR
[8] Liu G. R., Quek S. S., The Finite Element Method: A Practical Course, Butterworth–Heinemann, 2013, 464 pp.
[9] Samarskii A. A., Introduction to the Theory of Difference Schemes, Nauka, Moscow, 1971, 553 pp. (In Russian) | MR
[10] Anufrieva A. V., Tumakov D. N., Kipot V. L., “Elastic wave propagation through a layer with graded-index distribution of density”, Days on Diffraction (DD), St. Petersburg, 2012, 21–26
[11] Pavlova M. F., Rung E. V., “A convergence of an implicit difference scheme for the saturated-unsaturated filtration consolidation problem”, Lobachevskii J. Math., 34:4 (2013,), 392–405 | DOI | MR | MR | Zbl
[12] Pavlova M. F., Rung E. V., “On convergence of an implicit difference scheme for the saturated-unsaturated filtration consolidation problem”, Mesh Methods for Boundary Value Problems and Applications, Proc. 9th All-Russ. Conf., Otechestvo, Kazan, 2012, 290–295 (In Russian)
[13] Anufrieva A. V., Igudesman K. B., Tumakov D. N., “Peculiarities of elastic wave refraction from the layer with fractal distribution of density”, Appl. Math. Sci., 8:118 (2014), 5875–5886
[14] Anufrieva A. V., Tumakov D. N., “On some of the peculiarities of propagation of an elastic wave through a gradient transversely isotropic layer”, Days on Diffraction (DD), St. Petersburg, 2014, 23–28