On multiple polynomials of Capelli type
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 1, pp. 5-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper deals with the class of Capelli polynomials in free associative algebra $F\{Z\}$ (where $F$ is an arbitrary field, $Z$ is a countable set) generalizing the construction of multiple Capelli polynomials. The fundamental properties of the introduced Capelli polynomials are provided. In particular, decomposition of the Capelli polynomials by means of the same type of polynomials is shown. Furthermore, some relations between their $T$-ideals are revealed. A connection between double Capelli polynomials and Capelli quasi-polynomials is established.
Mots-clés : matrix algebra, Capelli polynomial
Keywords: polynomial identity, free associative algebra, symmetric group, standard polynomial, $T$-ideal.
@article{UZKU_2016_158_1_a0,
     author = {S. Y. Antonov and A. V. Antonova},
     title = {On multiple polynomials of {Capelli} type},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {5--25},
     year = {2016},
     volume = {158},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2016_158_1_a0/}
}
TY  - JOUR
AU  - S. Y. Antonov
AU  - A. V. Antonova
TI  - On multiple polynomials of Capelli type
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2016
SP  - 5
EP  - 25
VL  - 158
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2016_158_1_a0/
LA  - ru
ID  - UZKU_2016_158_1_a0
ER  - 
%0 Journal Article
%A S. Y. Antonov
%A A. V. Antonova
%T On multiple polynomials of Capelli type
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2016
%P 5-25
%V 158
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2016_158_1_a0/
%G ru
%F UZKU_2016_158_1_a0
S. Y. Antonov; A. V. Antonova. On multiple polynomials of Capelli type. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 1, pp. 5-25. http://geodesic.mathdoc.fr/item/UZKU_2016_158_1_a0/

[1] Razmyslov Yu. P., “The Jacobson radical in PI-algebras”, Algebra Logic, 13:3 (1974), 192–204 | DOI | MR

[2] Chang Q., “Some consequences of the standard polynomial”, Proc. Amer. Math. Soc, 104:3 (1988), 707–710 | DOI | MR | Zbl

[3] Domokos M., “A generalization of a theorem of Chang”, Communications in Algebra, 23:12 (1995), 4333–4342 | DOI | MR | Zbl

[4] Szigeti J., Tuza Z., Revesz G., “Eulerian polynomial identities on matrix rings”, J. Algebra, 161:1 (1993), 90–101 | DOI | MR | Zbl

[5] Lee A., Revesz G., Szigeti J., Tuza Z., “Capelli polynomials, almost-permutation matrices and sparse Eulerian graphs”, Discrete Math., 230:1–3 (2001), 49–61 | DOI | MR | Zbl

[6] Antonov S. Yu., Antonova A. V., “To Chang theorem”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 15:3 (2015), 247–251 (In Russian) | DOI | Zbl

[7] Antonov S. Yu., Antonova A. V., “Quasi-polynomials of Capelli”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 15:4 (2015), 371–382 (In Russian) | DOI

[8] Antonov S. Yu., “The least degree of identities in the subspace $M_1^{(m,k)}(F)$ of the matrix superalgebra $M^{(m,k)}(F)$”, Russ. Math., 56:11 (2012), 1–16 | DOI | MR | Zbl

[9] Antonov S. Yu., “Some types of identities of subspaces $M_0^{(m,k)}(F)$, $M_1^{(m,k)}(F)$ of matrix superalgebra $M^{(m,k)}(F)$”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 154, no. 1, 2012, 189–201 (In Russian) | MR

[10] Kemer A. R., “Remark on the standard identity”, Math. Notes Acad. Sci. USSR, 23:5 (1978), 414–416 | DOI | MR | Zbl

[11] Amitsur S. A., Levitzki J., “Minimal identities for algebras”, Proc. Amer. Math. Soc., 1:4 (1950), 449–463 | DOI | MR | Zbl

[12] Giambruno A., Sehgal S. K., “On a polynomial identity for $n\times n$ matrices”, J. Algebra, 126:2 (1989), 451–453 | DOI | MR | Zbl