Keywords: polynomial identity, free associative algebra, symmetric group, standard polynomial, $T$-ideal.
@article{UZKU_2016_158_1_a0,
author = {S. Y. Antonov and A. V. Antonova},
title = {On multiple polynomials of {Capelli} type},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {5--25},
year = {2016},
volume = {158},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2016_158_1_a0/}
}
TY - JOUR AU - S. Y. Antonov AU - A. V. Antonova TI - On multiple polynomials of Capelli type JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2016 SP - 5 EP - 25 VL - 158 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZKU_2016_158_1_a0/ LA - ru ID - UZKU_2016_158_1_a0 ER -
S. Y. Antonov; A. V. Antonova. On multiple polynomials of Capelli type. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 158 (2016) no. 1, pp. 5-25. http://geodesic.mathdoc.fr/item/UZKU_2016_158_1_a0/
[1] Razmyslov Yu. P., “The Jacobson radical in PI-algebras”, Algebra Logic, 13:3 (1974), 192–204 | DOI | MR
[2] Chang Q., “Some consequences of the standard polynomial”, Proc. Amer. Math. Soc, 104:3 (1988), 707–710 | DOI | MR | Zbl
[3] Domokos M., “A generalization of a theorem of Chang”, Communications in Algebra, 23:12 (1995), 4333–4342 | DOI | MR | Zbl
[4] Szigeti J., Tuza Z., Revesz G., “Eulerian polynomial identities on matrix rings”, J. Algebra, 161:1 (1993), 90–101 | DOI | MR | Zbl
[5] Lee A., Revesz G., Szigeti J., Tuza Z., “Capelli polynomials, almost-permutation matrices and sparse Eulerian graphs”, Discrete Math., 230:1–3 (2001), 49–61 | DOI | MR | Zbl
[6] Antonov S. Yu., Antonova A. V., “To Chang theorem”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 15:3 (2015), 247–251 (In Russian) | DOI | Zbl
[7] Antonov S. Yu., Antonova A. V., “Quasi-polynomials of Capelli”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 15:4 (2015), 371–382 (In Russian) | DOI
[8] Antonov S. Yu., “The least degree of identities in the subspace $M_1^{(m,k)}(F)$ of the matrix superalgebra $M^{(m,k)}(F)$”, Russ. Math., 56:11 (2012), 1–16 | DOI | MR | Zbl
[9] Antonov S. Yu., “Some types of identities of subspaces $M_0^{(m,k)}(F)$, $M_1^{(m,k)}(F)$ of matrix superalgebra $M^{(m,k)}(F)$”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 154, no. 1, 2012, 189–201 (In Russian) | MR
[10] Kemer A. R., “Remark on the standard identity”, Math. Notes Acad. Sci. USSR, 23:5 (1978), 414–416 | DOI | MR | Zbl
[11] Amitsur S. A., Levitzki J., “Minimal identities for algebras”, Proc. Amer. Math. Soc., 1:4 (1950), 449–463 | DOI | MR | Zbl
[12] Giambruno A., Sehgal S. K., “On a polynomial identity for $n\times n$ matrices”, J. Algebra, 126:2 (1989), 451–453 | DOI | MR | Zbl