Numerical solution of an inverse problem of filtration
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 157 (2015) no. 4, pp. 79-89 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A numerical method is suggested to solve the multidimensional inverse problem for the fluid flow in a porous media in order to determine the flow rates by the given bottomhole pressure. Approximation by space is based on the finite element method that allows simulation in unstructured grids with refinement near the location of wells. Discretization by time is performed with the use of implicit difference approximation. The numerical results for two- and three-dimensional test problems are presented.
Mots-clés : filtration
Keywords: inverse problem, debit, bottomhole pressure, finite element method, unstructured grids.
@article{UZKU_2015_157_4_a6,
     author = {P. N. Vabishchevich and V. l. Vasil'ev and M. V. Vasil'eva and D. Ya. Nikiforov},
     title = {Numerical solution of an inverse problem of filtration},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {79--89},
     year = {2015},
     volume = {157},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2015_157_4_a6/}
}
TY  - JOUR
AU  - P. N. Vabishchevich
AU  - V. l. Vasil'ev
AU  - M. V. Vasil'eva
AU  - D. Ya. Nikiforov
TI  - Numerical solution of an inverse problem of filtration
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2015
SP  - 79
EP  - 89
VL  - 157
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2015_157_4_a6/
LA  - ru
ID  - UZKU_2015_157_4_a6
ER  - 
%0 Journal Article
%A P. N. Vabishchevich
%A V. l. Vasil'ev
%A M. V. Vasil'eva
%A D. Ya. Nikiforov
%T Numerical solution of an inverse problem of filtration
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2015
%P 79-89
%V 157
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2015_157_4_a6/
%G ru
%F UZKU_2015_157_4_a6
P. N. Vabishchevich; V. l. Vasil'ev; M. V. Vasil'eva; D. Ya. Nikiforov. Numerical solution of an inverse problem of filtration. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 157 (2015) no. 4, pp. 79-89. http://geodesic.mathdoc.fr/item/UZKU_2015_157_4_a6/

[1] Samarskii A. A., Vabischevich P. N., Chislennye metody resheniya obratnykh zadach matematicheskoi fiziki, Izd-vo LKI, M., 2009, 480 pp.

[2] Borukhov V. T., Vabishchevich P. N., “Numerical solution of the inverse problem of reconstructing a distributed right-hand side of a parabolic equation”, Comput. Phys. Commun., 126:1–2 (2000), 32–36 | DOI | MR | Zbl

[3] Vabischevich P. N., Vasilev V. I., “Vychislitelnaya identifikatsiya mladshego koeffitsienta parabolicheskogo uravneniya”, Dokl. RAN, 455:3 (2014), 258–260 | DOI

[4] Vabishchevich P. N., Vasil'ev V. I., “Computational algorithms for solving the coefficient inverse problem for parabolic equations”, Inverse. Probl. Sci. Eng., 24:1 (2016), 42–59 | DOI

[5] Vabischevich P. N., Vasileva M. V., Vasilev V. I., “Vychislitelnaya identifikatsiya pravoi chasti parabolicheskogo uravneniya”, Zhurn. vychisl. matem. i matem. fiziki, 55:6 (2015), 1020–1027 | DOI | MR

[6] Morozov P. E., Khairullin M. Kh., Shamsiev M. N., “Chislennoe reshenie pryamoi i obratnoi zadachi pri filtratsii flyuida k gorizontalnoi skvazhine”, Vychisl. metody i programmirovanie, 6 (2005), 262–268

[7] Schelkachev V. N., Uprugii rezhim plastovykh vodonapornykh sistem, Gostoptekhizdat, M., 1948, 144 pp.

[8] Bulygin V. Ya., Gidromekhanika neftyanogo plasta, Nedra, M., 1974, 232 pp.

[9] Vasilev V. I., Popov V. V., Timofeeva T. S., Vychislitelnye metody v razrabotke mestorozhdenii nefti i gaza, Izd-vo SO RAN, Novosibirsk, 2000, 126 pp.

[10] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977, 656 pp. | MR

[11] Saad Yu., Iteratsionnye metody dlya razrezhennykh lineinykh sistem, v. 1, Izd-vo Mosk. un-ta, M., 2013, 344 pp.