On gradings of the operator algebra generated by mapping and multipliers
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 157 (2015) no. 4, pp. 56-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The operator algebra generated by mapping on a countable set and multipliers is considered. The defined mapping induces a family of partial isometries satisfying some relations. These isometries, as well as the multipliers, are the generators of the investigated algebra. We equip the algebra with a torus action and consider the corresponding covariant system.
Keywords: $C^*$-algebra, partial isometry, fixed-point subalgebra.
Mots-clés : multiplier, group action on $C^*$-algebra
@article{UZKU_2015_157_4_a4,
     author = {E. V. Patrin},
     title = {On gradings of the operator algebra generated by mapping and multipliers},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {56--66},
     year = {2015},
     volume = {157},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2015_157_4_a4/}
}
TY  - JOUR
AU  - E. V. Patrin
TI  - On gradings of the operator algebra generated by mapping and multipliers
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2015
SP  - 56
EP  - 66
VL  - 157
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2015_157_4_a4/
LA  - ru
ID  - UZKU_2015_157_4_a4
ER  - 
%0 Journal Article
%A E. V. Patrin
%T On gradings of the operator algebra generated by mapping and multipliers
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2015
%P 56-66
%V 157
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2015_157_4_a4/
%G ru
%F UZKU_2015_157_4_a4
E. V. Patrin. On gradings of the operator algebra generated by mapping and multipliers. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 157 (2015) no. 4, pp. 56-66. http://geodesic.mathdoc.fr/item/UZKU_2015_157_4_a4/

[1] Kuznetsova A. Yu., Patrin E. V., “Ob odnom klasse $C^*$-algebr, porozhdennykh chastichnymi izometriyami i multiplikatorami”, Izv. vuzov. Matem., 2012, no. 6, 44–55 | MR | Zbl

[2] Kuznetsova A. Yu., Patrin E. V., “On the structure of $C^*$-algebra generated by a family of partial isometries and multipliers”, Armen. J. Math., 7:1 (2015), 50–58 | MR | Zbl

[3] Grigoryan S. A., Kuznetsova A. Yu., “$C^*$-algebry, porozhdennye otobrazheniyami”, Matem. zametki, 87:5 (2010), 694–703 | DOI | MR | Zbl

[4] Kuznetsova A. Yu., “Ob odnom klase $C^{*}$-algebr, porozhdennykh schetnym semeistvom chastichnykh izometrii”, Izv. NAN Armenii. Matem., 45:16 (2010), 51–62 | MR | Zbl

[5] Grigoryan S., Kuznetsova A., “$C^*$-algebras generated by mappings”, Lobachevskii J. Math., 29:1 (2008), 5–8 | DOI | MR | Zbl

[6] Grigoryan S., Kuznetsova A., “On a class of nuclear $C^*$-algebras”, An Operator Theory Summer, Proc. 23rd Int. Conf. on Operator Theory, Theta Foundation, Bucharest, 2012, 39–50 | MR

[7] Grigoryan S. A., Kuznetsova A. Yu., Patrin E. V., “Ob odnom kriterii neprivodimosti algebry $C^*_\varphi(X)$”, Izv. NAN Armenii. Matem., 49:1 (2014), 75–82