Numerical and analytical study of processes described by the nonlinear heat equation
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 157 (2015) no. 4, pp. 42-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper deals with one-dimensional boundary value problems for the nonlinear heat conduction (porous medium) equation in the case of a power law relationship between the heat conduction coefficient and temperature, the solution of which is a heat wave spreading along the cold background at the finite rate. A numerical algorithm of the solution obtained by the boundary element method is developed. Its software implementation is performed. Numerical calculations are carried out. Their results are compared to the known exact solutions of the considered equation, as well as to the multiple power series that are solutions of the investigated problem in case of the analyticity of the input data. The results reported here extend our previous work in this area.
Keywords: partial differential equations, nonlinear heat conduction equation, boundary element method, power series, heat wave.
@article{UZKU_2015_157_4_a2,
     author = {A. L. Kazakov and L. F. Spevak},
     title = {Numerical and analytical study of processes described by the nonlinear heat equation},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {42--48},
     year = {2015},
     volume = {157},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2015_157_4_a2/}
}
TY  - JOUR
AU  - A. L. Kazakov
AU  - L. F. Spevak
TI  - Numerical and analytical study of processes described by the nonlinear heat equation
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2015
SP  - 42
EP  - 48
VL  - 157
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2015_157_4_a2/
LA  - ru
ID  - UZKU_2015_157_4_a2
ER  - 
%0 Journal Article
%A A. L. Kazakov
%A L. F. Spevak
%T Numerical and analytical study of processes described by the nonlinear heat equation
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2015
%P 42-48
%V 157
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2015_157_4_a2/
%G ru
%F UZKU_2015_157_4_a2
A. L. Kazakov; L. F. Spevak. Numerical and analytical study of processes described by the nonlinear heat equation. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 157 (2015) no. 4, pp. 42-48. http://geodesic.mathdoc.fr/item/UZKU_2015_157_4_a2/

[1] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1977, 735 pp. | MR

[2] Barenblatt G. I., Entov V. M., Ryzhik V. M., Teoriya nestatsionarnoi filtratsii zhidkosti i gaza, Nedra, M., 1972, 288 pp.

[3] Sidorov A. F., Izbrannye trudy: Matematika. Mekhanika, Fizmatlit, M., 2001, 576 pp. | MR

[4] Vazquez J. L., The Porous Medium Equation: Mathematical Theory, Clarendon Press, Oxford, 2007, 648 pp. | MR

[5] Kazakov A. L., Lempert A. A., “O suschestvovanii i edinstvennosti resheniya odnoi kraevoi zadachi dlya parabolicheskogo uravneniya tipa nestatsionarnoi filtratsii”, Prikl. mekhanika i tekhn. fizika, 54:2 (2013), 97–105 | MR | Zbl

[6] Kazakov A. L., Spevak L. F., “Numerical and analytical studies of a nonlinear parabolic equation with boundary conditions of a special form”, Appl. Math. Model., 37:10–11 (2013), 6918–6928 | DOI | MR

[7] Kazakov A. L., Spevak L. F., “Chislennoe issledovanie nelineinogo uravneniya teploprovodnosti v sluchayakh krugovoi i sfericheskoi simmetrii”, Vestn. KGTU im. A. N. Tupoleva, 2013, no. 3, 105–110 | MR

[8] Kazakov A. L., Kuznetsov P. A., Spevak L. F., “Ob odnoi kraevoi zadache s vyrozhdeniem dlya nelineinogo uravneniya teploprovodnosti v sfericheskikh koordinatakh”, Trudy In-ta matematiki i mekhaniki UrO RAN, 20, no. 1, 2014, 119–129 | MR

[9] Kazakov A. L., Kuznetsov P. A., Lempert A. A., “O postroenii teplovoi volny dlya nelineinogo uravneniya teploprovodnosti v simmetrichnom sluchae”, Izv. Irkut. gos. un-ta. Ser. Matem., 11 (2015), 39–53

[10] Polyanin A. D., Zaitsev V. F., Spravochnik po nelineinym uravneniyam matematicheskoi fiziki: Tochnye resheniya, Fizmatlit, M., 2002, 432 pp. | MR