@article{UZKU_2015_157_4_a13,
author = {L. U. Sultanov},
title = {Analysis of finite elastoplastic deformations. {Kinematics} and constitutive equations},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {158--165},
year = {2015},
volume = {157},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2015_157_4_a13/}
}
TY - JOUR AU - L. U. Sultanov TI - Analysis of finite elastoplastic deformations. Kinematics and constitutive equations JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2015 SP - 158 EP - 165 VL - 157 IS - 4 UR - http://geodesic.mathdoc.fr/item/UZKU_2015_157_4_a13/ LA - ru ID - UZKU_2015_157_4_a13 ER -
%0 Journal Article %A L. U. Sultanov %T Analysis of finite elastoplastic deformations. Kinematics and constitutive equations %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2015 %P 158-165 %V 157 %N 4 %U http://geodesic.mathdoc.fr/item/UZKU_2015_157_4_a13/ %G ru %F UZKU_2015_157_4_a13
L. U. Sultanov. Analysis of finite elastoplastic deformations. Kinematics and constitutive equations. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 157 (2015) no. 4, pp. 158-165. http://geodesic.mathdoc.fr/item/UZKU_2015_157_4_a13/
[1] Golovanov A. I., Konoplev Yu. G., Sultanov L. U., “Chislennoe issledovanie konechnykh deformatsii giperuprugikh tel. I. Kinematika i variatsionnye uravneniya”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 150, no. 1, 2008, 29–37 | Zbl
[2] Golovanov A. I., Konoplev Yu. G., Sultanov L. U., “Chislennoe issledovanie konechnykh deformatsii giperuprugikh tel. II. Fizicheskie sootnosheniya”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 150, no. 3, 2008, 122–132
[3] Golovanov A. I., Konoplev Yu. G., Sultanov L. U., “Chislennoe issledovanie konechnykh deformatsii giperuprugikh tel. III. Postanovki zadachi i algoritmy resheniya”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 151, no. 3, 2009, 108–120 | Zbl
[4] Golovanov A. I., Konoplev Yu. G., Sultanov L. U., “Chislennoe issledovanie konechnykh deformatsii giperuprugikh tel. IV. Konechnoelementnaya realizatsiya. Primery resheniya zadach”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 152, no. 4, 2010, 115–126 | MR
[5] Golovanov A. I., Sultanov L. U., “Chislennoe issledovanie bolshikh uprugoplasticheskikh deformatsii trekhmernykh tel”, Prikl. mekhanika, 41:6 (2005), 36–43 | Zbl
[6] Golovanov A. I., Sultanov L. U., “Issledovanie zakriticheskogo uprugoplasticheskogo sostoyaniya trekhmernykh tel s uchetom konechnykh deformatsii”, Izv. vuzov. Aviats. tekhnika, 2008, no. 4, 13–16
[7] Davydov R. L., Sultanov L. U., “Chislennyi algoritm resheniya zadachi o bolshikh uprugoplasticheskikh deformatsiyakh MKE”, Vestn. PNIPU. Mekhanika, 2013, no. 1, 81–93
[8] Davydov R., Sultanov L., “Numerical algorithm of solving the problem of large elastic-plastic deformation by FEM”, Sixth International Conference on Nonlinear Mechanics, ICNM-VI, DEStech Publ., Inc., USA, 2013, 64–67
[9] Golovanov A. I., Sultanov L. U., Matematicheskie modeli vychislitelnoi nelineinoi mekhaniki deformiruemykh sred, Kazan. gos. un-t, Kazan, 2009, 464 pp.
[10] Golovanov A. I., Sultanov L. U., Teoreticheskie osnovy vychislitelnoi nelineinoi mekhaniki deformiruemykh sred, Kazan. gos. un-t, Kazan, 2008, 165 pp.
[11] Eidel B., Gruttmann F., “Elastoplastic orthotropy at finite strains: multiplicative formulation and numerical implementation”, Comput. Mater. Sci., 28:3–4 (2003), 732–742 | DOI
[12] Schröder J., Gruttmann F., Löblein J., “A simple orthotropic finite elasto-plasticity model based on generalized stress-strain measures”, Comput. Mech., 30:1 (2002), 48–64 | DOI | Zbl
[13] Simo J. S., “A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part I. Continuum formulation”, Comput. Meth. Appl. Mech. Eng., 66:2 (1988), 199–219 | DOI | MR | Zbl
[14] Miehe C., “A theory of large-strain isotropic thermoplasticity based on metric transformation tensors”, Arch. Appl. Mech., 66:1 (1995), 45–64 | DOI | MR | Zbl
[15] Basar Y., Itskov M., “Constitutive model and finite element formulation for large strain elasto-plastic analysis of shell”, Comput. Mech., 23:5 (1999), 466–481 | Zbl
[16] Meyers A., Schievbe P., Bruhns O. T., “Some comments on objective rates of symmetric Eulerian tensors with application to Eulerian strain rates”, Acta Mech., 139:1 (2000), 91–103 | DOI | Zbl
[17] Xiao H., Bruhns O. T., Meyers A., “A consistent finite elastoplasticity theory combining additive and multiplicative decomposition of the stretching and deformation gradient”, Int. J. Plast., 16:2 (2000), 143–177 | DOI | Zbl
[18] Asghari M., Naghdabadi R., Sohrabpour S., “Stresses conjugate to the Jaumann rate of Eulerian strain measures”, Acta. Mech., 190:1 (2007), 45–56 | DOI | Zbl
[19] Lin R. C., “Numerical study of consistency of rate constitutive equations with elasticity at finite deformation”, Int. J. Numer. Meth. Eng., 55:9 (2002), 1053–1077 | DOI | Zbl
[20] Shen L.-J., “Constitutive relations for isotropic or kinematic hardening at finite elastic-plastic deformations”, Int. J. Solids Struct., 43:18–19 (2006), 5613–5627 | DOI | Zbl
[21] Eterovic A. L., Bathe K.-J., “A hyperelastic-based large strain elasto-plastic constitutive formulation with combined isotropic-kinematic hardening using the logarithmic stress and strain measures”, Int. J. Numer. Meth. Eng., 30:6 (1990), 1099–1114 | DOI | Zbl