Analysis of finite elastoplastic deformations. Kinematics and constitutive equations
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 157 (2015) no. 4, pp. 158-165 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The main kinematic relations and constitutive equations, which are used for creating computational methods to investigate finite elastoplastic deformations are presented in the paper. The medium kinematics is considered along with the multiplicative concept of the full deformation gradient. The constitutive equations are deduced using the theory of flow and the second law of thermodynamics. As a result, a dependence of the stress tensor rate on the free energy function and the yield function is obtained.
Keywords: nonlinear elasticity, finite deformations, plasticity.
@article{UZKU_2015_157_4_a13,
     author = {L. U. Sultanov},
     title = {Analysis of finite elastoplastic deformations. {Kinematics} and constitutive equations},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {158--165},
     year = {2015},
     volume = {157},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2015_157_4_a13/}
}
TY  - JOUR
AU  - L. U. Sultanov
TI  - Analysis of finite elastoplastic deformations. Kinematics and constitutive equations
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2015
SP  - 158
EP  - 165
VL  - 157
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2015_157_4_a13/
LA  - ru
ID  - UZKU_2015_157_4_a13
ER  - 
%0 Journal Article
%A L. U. Sultanov
%T Analysis of finite elastoplastic deformations. Kinematics and constitutive equations
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2015
%P 158-165
%V 157
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2015_157_4_a13/
%G ru
%F UZKU_2015_157_4_a13
L. U. Sultanov. Analysis of finite elastoplastic deformations. Kinematics and constitutive equations. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 157 (2015) no. 4, pp. 158-165. http://geodesic.mathdoc.fr/item/UZKU_2015_157_4_a13/

[1] Golovanov A. I., Konoplev Yu. G., Sultanov L. U., “Chislennoe issledovanie konechnykh deformatsii giperuprugikh tel. I. Kinematika i variatsionnye uravneniya”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 150, no. 1, 2008, 29–37 | Zbl

[2] Golovanov A. I., Konoplev Yu. G., Sultanov L. U., “Chislennoe issledovanie konechnykh deformatsii giperuprugikh tel. II. Fizicheskie sootnosheniya”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 150, no. 3, 2008, 122–132

[3] Golovanov A. I., Konoplev Yu. G., Sultanov L. U., “Chislennoe issledovanie konechnykh deformatsii giperuprugikh tel. III. Postanovki zadachi i algoritmy resheniya”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 151, no. 3, 2009, 108–120 | Zbl

[4] Golovanov A. I., Konoplev Yu. G., Sultanov L. U., “Chislennoe issledovanie konechnykh deformatsii giperuprugikh tel. IV. Konechnoelementnaya realizatsiya. Primery resheniya zadach”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 152, no. 4, 2010, 115–126 | MR

[5] Golovanov A. I., Sultanov L. U., “Chislennoe issledovanie bolshikh uprugoplasticheskikh deformatsii trekhmernykh tel”, Prikl. mekhanika, 41:6 (2005), 36–43 | Zbl

[6] Golovanov A. I., Sultanov L. U., “Issledovanie zakriticheskogo uprugoplasticheskogo sostoyaniya trekhmernykh tel s uchetom konechnykh deformatsii”, Izv. vuzov. Aviats. tekhnika, 2008, no. 4, 13–16

[7] Davydov R. L., Sultanov L. U., “Chislennyi algoritm resheniya zadachi o bolshikh uprugoplasticheskikh deformatsiyakh MKE”, Vestn. PNIPU. Mekhanika, 2013, no. 1, 81–93

[8] Davydov R., Sultanov L., “Numerical algorithm of solving the problem of large elastic-plastic deformation by FEM”, Sixth International Conference on Nonlinear Mechanics, ICNM-VI, DEStech Publ., Inc., USA, 2013, 64–67

[9] Golovanov A. I., Sultanov L. U., Matematicheskie modeli vychislitelnoi nelineinoi mekhaniki deformiruemykh sred, Kazan. gos. un-t, Kazan, 2009, 464 pp.

[10] Golovanov A. I., Sultanov L. U., Teoreticheskie osnovy vychislitelnoi nelineinoi mekhaniki deformiruemykh sred, Kazan. gos. un-t, Kazan, 2008, 165 pp.

[11] Eidel B., Gruttmann F., “Elastoplastic orthotropy at finite strains: multiplicative formulation and numerical implementation”, Comput. Mater. Sci., 28:3–4 (2003), 732–742 | DOI

[12] Schröder J., Gruttmann F., Löblein J., “A simple orthotropic finite elasto-plasticity model based on generalized stress-strain measures”, Comput. Mech., 30:1 (2002), 48–64 | DOI | Zbl

[13] Simo J. S., “A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part I. Continuum formulation”, Comput. Meth. Appl. Mech. Eng., 66:2 (1988), 199–219 | DOI | MR | Zbl

[14] Miehe C., “A theory of large-strain isotropic thermoplasticity based on metric transformation tensors”, Arch. Appl. Mech., 66:1 (1995), 45–64 | DOI | MR | Zbl

[15] Basar Y., Itskov M., “Constitutive model and finite element formulation for large strain elasto-plastic analysis of shell”, Comput. Mech., 23:5 (1999), 466–481 | Zbl

[16] Meyers A., Schievbe P., Bruhns O. T., “Some comments on objective rates of symmetric Eulerian tensors with application to Eulerian strain rates”, Acta Mech., 139:1 (2000), 91–103 | DOI | Zbl

[17] Xiao H., Bruhns O. T., Meyers A., “A consistent finite elastoplasticity theory combining additive and multiplicative decomposition of the stretching and deformation gradient”, Int. J. Plast., 16:2 (2000), 143–177 | DOI | Zbl

[18] Asghari M., Naghdabadi R., Sohrabpour S., “Stresses conjugate to the Jaumann rate of Eulerian strain measures”, Acta. Mech., 190:1 (2007), 45–56 | DOI | Zbl

[19] Lin R. C., “Numerical study of consistency of rate constitutive equations with elasticity at finite deformation”, Int. J. Numer. Meth. Eng., 55:9 (2002), 1053–1077 | DOI | Zbl

[20] Shen L.-J., “Constitutive relations for isotropic or kinematic hardening at finite elastic-plastic deformations”, Int. J. Solids Struct., 43:18–19 (2006), 5613–5627 | DOI | Zbl

[21] Eterovic A. L., Bathe K.-J., “A hyperelastic-based large strain elasto-plastic constitutive formulation with combined isotropic-kinematic hardening using the logarithmic stress and strain measures”, Int. J. Numer. Meth. Eng., 30:6 (1990), 1099–1114 | DOI | Zbl