Spline-interpolation solution of elasticity theory problems
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 157 (2015) no. 4, pp. 24-41 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A spline-interpolation solution of static and dynamic elasticity theory problems is suggested. The method allows to solve the problems for solids with plane sections parallel to the plane $XOY$. We reduce space and dynamic problems to the series of plane boundary-value problems. The recursive formulas are obtained to determine the spline coefficients. The convergence of the constructed approximate solutions to the exact solutions is proved.
Mots-clés : spline interpolation
Keywords: elasticity theory, dynamic problem, polyharmonic functions.
@article{UZKU_2015_157_4_a1,
     author = {P. N. Ivanshin},
     title = {Spline-interpolation solution of elasticity theory problems},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {24--41},
     year = {2015},
     volume = {157},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2015_157_4_a1/}
}
TY  - JOUR
AU  - P. N. Ivanshin
TI  - Spline-interpolation solution of elasticity theory problems
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2015
SP  - 24
EP  - 41
VL  - 157
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2015_157_4_a1/
LA  - ru
ID  - UZKU_2015_157_4_a1
ER  - 
%0 Journal Article
%A P. N. Ivanshin
%T Spline-interpolation solution of elasticity theory problems
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2015
%P 24-41
%V 157
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2015_157_4_a1/
%G ru
%F UZKU_2015_157_4_a1
P. N. Ivanshin. Spline-interpolation solution of elasticity theory problems. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 157 (2015) no. 4, pp. 24-41. http://geodesic.mathdoc.fr/item/UZKU_2015_157_4_a1/

[1] Muskhelishvili N. I., Nekotorye osnovnye zadachi matematicheskoi teorii uprugosti, Nauka, M., 1966, 707 pp.

[2] Kolosov G. V., Primenenie kompleksnykh diagramm i teorii funktsii kompleksnoi peremennoi k teorii uprugosti, ONTI, M.–L., 1935, 227 pp.

[3] Shirokova E. A., Ivanshin N. A., “Reshenie vtoroi osnovnoi zadachi teorii uprugosti dlya ploskosti s dvoyakosimmetrichnym vyrezom, imeyuschim dva nulevykh ugla”, Prikl. matem. i mekhanika, 61:2 (1997), 350–351 | MR

[4] Andersen L., Nielsen S. R. K., Elastic Beams in Three Dimensions, Aalborg University, 2008, 104 pp.

[5] Strang G., Introduction to Applied Mathematics, Wellesley-Cambridge Press, Wellesley, Mass., 1986, 767 pp. | MR | Zbl

[6] Shirokova E. A., Ivanshin P. N., Spline-Interpolation Solution of One Elasticity Theory Problem, Bentham Sci. Publ., 2011, 255 pp.

[7] Ivanshin P. N., Shirokova E. A., “Spline-interpolation solution of 3D Dirichlet problem for a certain class of solids”, IMA J. Appl. Math., 78:6 (2013), 1109–1129 | DOI | MR | Zbl

[8] Vekua I. N., “Reshenie osnovnoi kraevoi zadachi dlya uravneniya $\Delta^{n+1}u=0$”, Soobscheniya AN Gruzinskoi SSR, 3:3 (1942), 213–220 | MR | Zbl

[9] Cho S., Pai S. R., “On the regularity of the Riemann mapping function in the plane”, Pusan Kyongnam Math. J., 12:2 (1996), 203–211