On convergence of the explicit difference scheme for evolution variational inequality with nonlocal space operator
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 157 (2015) no. 4, pp. 5-23 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Nonlinear parabolic variational inequality with a nonlocal space operator monotone with respect to the gradient is considered. Using the methods of penalty and summatory identities, explicit difference scheme with respect to the space operator and implicit difference scheme with respect to the penalty operator are constructed. Conditions of stability for the constructed difference scheme are obtained. The theorem of convergence is proved under minimal assumptions on the smoothness of the original data.
Keywords: variational inequality, operator monotone with respect to gradient, nonlocal operator, explicit difference scheme with penalty operator, stability
Mots-clés : convergence.
@article{UZKU_2015_157_4_a0,
     author = {O. V. Glazyrina and M. F. Pavlova},
     title = {On convergence of the explicit difference scheme for evolution variational inequality with nonlocal space operator},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {5--23},
     year = {2015},
     volume = {157},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2015_157_4_a0/}
}
TY  - JOUR
AU  - O. V. Glazyrina
AU  - M. F. Pavlova
TI  - On convergence of the explicit difference scheme for evolution variational inequality with nonlocal space operator
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2015
SP  - 5
EP  - 23
VL  - 157
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2015_157_4_a0/
LA  - ru
ID  - UZKU_2015_157_4_a0
ER  - 
%0 Journal Article
%A O. V. Glazyrina
%A M. F. Pavlova
%T On convergence of the explicit difference scheme for evolution variational inequality with nonlocal space operator
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2015
%P 5-23
%V 157
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2015_157_4_a0/
%G ru
%F UZKU_2015_157_4_a0
O. V. Glazyrina; M. F. Pavlova. On convergence of the explicit difference scheme for evolution variational inequality with nonlocal space operator. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 157 (2015) no. 4, pp. 5-23. http://geodesic.mathdoc.fr/item/UZKU_2015_157_4_a0/

[1] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972, 587 pp. | MR

[2] Gaevskii Kh., Greger K., Zakhareas K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978, 336 pp. | MR

[3] Chipot M., Molinet L., “Asymptotic behavior of some nonlocal diffusion problems”, Applicable Analysis, 80:3–4 (2001), 279–315 | MR | Zbl

[4] Chipot M., Lovat B., “Existence and uniqueness results for a class of nonlocal elliptic and parabolic problems”, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 8:1 (2001), 35–51 | MR | Zbl

[5] Simon L., “On quasilinear parabolic functional differential equation with discontinuous terms”, Ann. Univ. Shi. Budapest, 47 (2004), 211–229 | MR | Zbl

[6] Glazyrina O. V., Pavlova M. F., “On the solvability of an evolution variational inequality with a nonlocal space operator”, Differential Equations, 50:7 (2014), 873–887 | DOI | MR | Zbl

[7] Glazyrina O. V., Pavlova M. F., “Teorema edinstvennosti resheniya evolyutsionnogo variatsionnogo neravenstva s nelokalnym prostranstvennym operatorom”, Materialy X Mezhdunar. konf. “Setochnye metody dlya kraevykh zadach i prilozheniya”, Kazan. fed. un-t, Kazan, 2014, 205–208

[8] Pavlova M. F, “On the solvability of nonlocal nonstationary problems with double degeneration”, Differential Equations, 47:8 (2011), 1161–1175 | DOI | MR | Zbl

[9] Glazyrina O. V., Pavlova M. F., “The unique solvability of a certain nonlocal nonlinear problem with a spatial operator strongly monotone with respect to the gradient”, Russian Mathematics (Iz. VUZ), 2012, no. 3, 83–86 | MR | Zbl

[10] Glazyrina O. V., Pavlova M. F., “Issledovanie skhodimosti yavnoi raznostnoi skhemy dlya parabolicheskogo uravneniya s nelineinym nelokalnym prostranstvennym operatorom”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 155, no. 4, 2013, 24–39

[11] Glazyrina O. V., Pavlova M. F., “Study of the convergence of the finite-element method for solving parabolic equations with a nonlinear nonlocal space operator”, Differential Equations, 51:7 (2015), 876–889 | DOI | MR | Zbl

[12] Kinderlerer D., Stampakkya G., Vvedenie v variatsionnye neravenstva i ikh prilozheniya, Mir, M., 1983, 256 pp. | MR

[13] Alt H. W., Luckhaus S., “Quasilinear elliptic-parabolic differential equations”, Math. Z., 183:8 (1983), 311–341 | MR | Zbl