Mots-clés : convergence.
@article{UZKU_2015_157_4_a0,
author = {O. V. Glazyrina and M. F. Pavlova},
title = {On convergence of the explicit difference scheme for evolution variational inequality with nonlocal space operator},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {5--23},
year = {2015},
volume = {157},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2015_157_4_a0/}
}
TY - JOUR AU - O. V. Glazyrina AU - M. F. Pavlova TI - On convergence of the explicit difference scheme for evolution variational inequality with nonlocal space operator JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2015 SP - 5 EP - 23 VL - 157 IS - 4 UR - http://geodesic.mathdoc.fr/item/UZKU_2015_157_4_a0/ LA - ru ID - UZKU_2015_157_4_a0 ER -
%0 Journal Article %A O. V. Glazyrina %A M. F. Pavlova %T On convergence of the explicit difference scheme for evolution variational inequality with nonlocal space operator %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2015 %P 5-23 %V 157 %N 4 %U http://geodesic.mathdoc.fr/item/UZKU_2015_157_4_a0/ %G ru %F UZKU_2015_157_4_a0
O. V. Glazyrina; M. F. Pavlova. On convergence of the explicit difference scheme for evolution variational inequality with nonlocal space operator. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 157 (2015) no. 4, pp. 5-23. http://geodesic.mathdoc.fr/item/UZKU_2015_157_4_a0/
[1] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972, 587 pp. | MR
[2] Gaevskii Kh., Greger K., Zakhareas K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978, 336 pp. | MR
[3] Chipot M., Molinet L., “Asymptotic behavior of some nonlocal diffusion problems”, Applicable Analysis, 80:3–4 (2001), 279–315 | MR | Zbl
[4] Chipot M., Lovat B., “Existence and uniqueness results for a class of nonlocal elliptic and parabolic problems”, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 8:1 (2001), 35–51 | MR | Zbl
[5] Simon L., “On quasilinear parabolic functional differential equation with discontinuous terms”, Ann. Univ. Shi. Budapest, 47 (2004), 211–229 | MR | Zbl
[6] Glazyrina O. V., Pavlova M. F., “On the solvability of an evolution variational inequality with a nonlocal space operator”, Differential Equations, 50:7 (2014), 873–887 | DOI | MR | Zbl
[7] Glazyrina O. V., Pavlova M. F., “Teorema edinstvennosti resheniya evolyutsionnogo variatsionnogo neravenstva s nelokalnym prostranstvennym operatorom”, Materialy X Mezhdunar. konf. “Setochnye metody dlya kraevykh zadach i prilozheniya”, Kazan. fed. un-t, Kazan, 2014, 205–208
[8] Pavlova M. F, “On the solvability of nonlocal nonstationary problems with double degeneration”, Differential Equations, 47:8 (2011), 1161–1175 | DOI | MR | Zbl
[9] Glazyrina O. V., Pavlova M. F., “The unique solvability of a certain nonlocal nonlinear problem with a spatial operator strongly monotone with respect to the gradient”, Russian Mathematics (Iz. VUZ), 2012, no. 3, 83–86 | MR | Zbl
[10] Glazyrina O. V., Pavlova M. F., “Issledovanie skhodimosti yavnoi raznostnoi skhemy dlya parabolicheskogo uravneniya s nelineinym nelokalnym prostranstvennym operatorom”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 155, no. 4, 2013, 24–39
[11] Glazyrina O. V., Pavlova M. F., “Study of the convergence of the finite-element method for solving parabolic equations with a nonlinear nonlocal space operator”, Differential Equations, 51:7 (2015), 876–889 | DOI | MR | Zbl
[12] Kinderlerer D., Stampakkya G., Vvedenie v variatsionnye neravenstva i ikh prilozheniya, Mir, M., 1983, 256 pp. | MR
[13] Alt H. W., Luckhaus S., “Quasilinear elliptic-parabolic differential equations”, Math. Z., 183:8 (1983), 311–341 | MR | Zbl