New analytical formulae and theorems for the wave resistance
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 157 (2015) no. 3, pp. 72-84 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Wave resistance is an important characteristic of bodies floating on a free surface or moving under it. A significant number of works pioneered by Lord Kelvin (1887) have been devoted to determination of this characteristic. The problem was studied by such eminent scientists as J. H. Michell, T. H. Havelock, L. N. Sretenskii, N. E. Kochin, M. V. Keldysh, M. A. Lavrentiev, and by many others. The overwhelming majority of investigations were carried out in the framework of the linear wave theory. Successes of the nonlinear theory are much more modest and can be characterized by the almost utter absence of accurate analytical results. A simple exact analytical formula for the wave resistance of a two-dimensional body, which moves in a fluid of finite depth, is presented in this work. Two theorems on the wave resistance are proved.
Keywords: two-dimensional body, potential flow, gravity waves, free surface, wave resistance.
@article{UZKU_2015_157_3_a9,
     author = {D. V. Maklakov},
     title = {New analytical formulae and theorems for the wave resistance},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {72--84},
     year = {2015},
     volume = {157},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2015_157_3_a9/}
}
TY  - JOUR
AU  - D. V. Maklakov
TI  - New analytical formulae and theorems for the wave resistance
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2015
SP  - 72
EP  - 84
VL  - 157
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2015_157_3_a9/
LA  - ru
ID  - UZKU_2015_157_3_a9
ER  - 
%0 Journal Article
%A D. V. Maklakov
%T New analytical formulae and theorems for the wave resistance
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2015
%P 72-84
%V 157
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2015_157_3_a9/
%G ru
%F UZKU_2015_157_3_a9
D. V. Maklakov. New analytical formulae and theorems for the wave resistance. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 157 (2015) no. 3, pp. 72-84. http://geodesic.mathdoc.fr/item/UZKU_2015_157_3_a9/

[1] Lamb H., Hydrodynamics, Cambridge Univ. Press, Cambridge, 1932, 738 pp. | MR | Zbl

[2] Dias F., Vanden-Broek J.-M., “Generalised critical free-surface flows”, J. Eng. Math., 42:3–4 (2002), 291–301 | DOI | MR | Zbl

[3] Lord Kelvin, “On ship waves”, Proc. Inst. Mech. Engs. (London), 38 (1887), 409–434 | DOI

[4] Wehausen J. V., Laitone E. V., “Surface waves”, Encyclopaedia of Physics, v. IX, Springer Verlag, Berlin, 1960, 446–778 | MR

[5] Duncan J. H., “A note on the evaluation of the wave resistance of two-dimensional bodies from measurements of the downstream wave profile”, J. Ship Res., 27:2 (1983), 90–92

[6] Longuet-Higgins M. S., “Integral properties of periodic gravity waves of finite amplitude”, Proc. R. Soc. Lond. A, 342 (1975), 157–174 | DOI | MR | Zbl

[7] Whitham G. B., “Mass, momentum and energy flux in water waves”, J. Fluid Mech., 12 (1962), 135–147 | DOI | MR

[8] Salvesen N., von Kerczek C., “Comparison of numerical and perturbation solutions of two-dimensional onlinear water-wave problems”, J. Ship Res., 20:3 (1976), 160–170

[9] Benjamin T. B., Lighthill M. J., “On cnoidal waves and bores”, Proc. R. Soc. Lond. A, 224 (1954), 448–460 | DOI | MR | Zbl

[10] Cokelet E. D., “Steep gravity waves in water of arbitrary uniform depth”, Proc. R. Soc. Lond. A, 286 (1977), 183–230 | MR | Zbl

[11] Levi-Civita T., “Détermination rigoureuse des ondes permanentes d'ampleur finie”, Math. Ann., 93 (1925), 264–314 | DOI | MR | Zbl

[12] Forbes L. K., “Critical free-surface flow over a semi-circular obstruction”, J. Eng. Math., 22:1 (1988), 3–13 | DOI | Zbl

[13] Shen S. S. P., Shen M. C., “On the limit of subcritical free-surface flow over an obstruction”, Acta Mech., 82:3–4 (1990), 225–230 | DOI | MR | Zbl

[14] Keady G., Norbury J., “Waves and conjugate streams”, J. Fluid Mech., 70 (1975), 663–671 | DOI | MR | Zbl

[15] Benjamin T. B., “Verification of the Benjamin–Lighthill conjecture about steady water waves”, J. Fluid Mech., 295 (1995), 337–356 | DOI | MR | Zbl

[16] Dias F., Vanden-Broek J.-M., “Trapped waves between submerged obstacles”, J. Fluid Mech., 509 (2004), 93–102 | DOI | MR

[17] Binder B. J., Vanden-Broek J.-M., Dias F., “On satisfying the radiation condition in free-surface flows”, J. Fluid Mech., 624 (2009), 179–189 | DOI | MR | Zbl

[18] Forbes L. K., “Non-linear, drag-free flow over a submerged semi-elliptical body”, J. Eng. Math., 16:2 (1982), 171–180 | DOI | Zbl

[19] Maklakov D. V., “Flow over an obstruction with generation of nonlinear waves on the free surface: liniting regimes”, Fluid Dynamics, 30:2 (1995), 245–253 | DOI | MR | Zbl

[20] Holmes R. J., Hocking G. C., Forbes L. K., Baillard N. Y., “Waveless subcritical flow past symmetric bottom topography”, Eur. J. Appl. Math., 24:2 (2013), 213–230 | DOI | MR | Zbl

[21] Forbes L. K., Schwartz L. W., “Free-surface flow over a semicircular obstruction”, J. Fluid Mech., 114 (1982), 299–314 | DOI | Zbl

[22] Vanden-Broek J.-M., “Free-surface flow over an obstruction in a channel”, Phys. Fluids, 30:8 (1987), 2315–2317 | DOI