On the modeling of hysteretic oscillations of mechanical systems
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 157 (2015) no. 3, pp. 42-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper considers nonstationary vibrations of mechanical systems with hysteretic dampers. To describe the hysteresis, a phenomenological approach is suggested, which is demonstrated on the problem of forced vibrations produced by the antigalloping device used for protection of power transmission lines. In accordance with this approach, the force and kinematic parameters of the mechanical system are correlated via the first-order ordinary differential equation. The right-hand part of the equation is chosen from the class of functions that ensure the asymptotic approximation of the solution to the curves of the enveloping (boundary) hysteretic cycle of steady-state vibrations. Identification of the equation coefficients is carried out based on experimental data for the enveloping cycle. The proposed approach allows us to describe the trajectory of hysteresis under the conditions of nonstationary vibrations, as well as to evaluate the effectiveness of damping devices and to select the frequency ranges of their application.
Keywords: nonstationary vibrations, dampers, energy dissipation hysteresis, kinematic approach, enveloping cycle, identification of parameters.
@article{UZKU_2015_157_3_a4,
     author = {A. N. Danilin},
     title = {On the modeling of hysteretic oscillations of mechanical systems},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {42--47},
     year = {2015},
     volume = {157},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2015_157_3_a4/}
}
TY  - JOUR
AU  - A. N. Danilin
TI  - On the modeling of hysteretic oscillations of mechanical systems
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2015
SP  - 42
EP  - 47
VL  - 157
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2015_157_3_a4/
LA  - ru
ID  - UZKU_2015_157_3_a4
ER  - 
%0 Journal Article
%A A. N. Danilin
%T On the modeling of hysteretic oscillations of mechanical systems
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2015
%P 42-47
%V 157
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2015_157_3_a4/
%G ru
%F UZKU_2015_157_3_a4
A. N. Danilin. On the modeling of hysteretic oscillations of mechanical systems. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 157 (2015) no. 3, pp. 42-47. http://geodesic.mathdoc.fr/item/UZKU_2015_157_3_a4/

[1] Krasnoselskii M. A., Pokrovskii A. V., Sistemy s gisterezisom, Nauka, M., 1983, 271 pp. | MR

[2] Reiner M., Reologiya, Per. s angl., Nauka, M., 1965, 224 pp.

[3] Panovko Ya. G., Vnutrennee trenie pri kolebaniyakh uprugikh sistem, Fizmatgiz, M., 1960, 193 pp.

[4] Davidenkov N. N., “O rasseyanii energii pri vibratsiyakh”, Zhurn. tekhn. fiziki, 8:6 (1938), 15–21

[5] Pisarenko G. S., Rasseyanie energii pri mekhanicheskikh kolebaniyakh, Izd-vo AN USSR, Kiev, 1962, 436 pp.

[6] Lebedev A. B., “Amplitudno-zavisimyi defekt modulya uprugosti v osnovnykh modelyakh dislokatsionnogo gisterezisa”, Fizika tverdogo tela, 41:7 (1999), 1214–1222

[7] Plakhtienko N. P., “Metody identifikatsii nelineinykh mekhanicheskikh kolebatelnykh sistem”, Prikl. mekhanika, 36:12 (2000), 38–68 | Zbl

[8] Danilin A. N., Shalashilin V. I., “A method to identify hysteresis by an example of an antigal-loping device”, Int. Appl. Mech., 46:5 (2010), 588–595 | DOI

[9] Danilin A. N., Kozlov K. S., “Modelirovanie nestatsionarnykh kolebanii gasitelei vibratsii s uchetom gisterezisa dissipatsii energii”, Mekhanika kompozitsionnykh materialov i konstruktsii, 19:1 (2013), 34–47

[10] Danilin A. N., Yanovsky Yu. G., Semenov N. A., Shalashilin A. D., “Kinematic model of the rheological behavior of non-newtonian fluids in condition of nonstationary cyclic loading”, Composites: Mechanics, Computations, Applications: An Int. J., 3:4 (2012), 331–345 | DOI