Localized turbulent structures in a circular pipe
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 157 (2015) no. 3, pp. 111-116 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Transition to turbulence in a pipe flow begins with the appearance of spatially localized structures, such as turbulent puffs. The investigation of a conditionally time-periodic solution of the Navier–Stokes equations, which is qualitatively close to a turbulent puff, is carried out with the aim to explain the mechanism of turbulent puffs. Such solutions are given by the separatrix dividing the attraction regions of laminar and turbulent solutions. In particular, it is shown that the mechanism underlying oscillations is not driven by the Kelvin–Helmholtz instability, which was considered as the main mechanism of oscillation generation in the turbulent puff.
Keywords: Navier–Stokes equations, direct numerical simulation, localized solution, turbulent puffs, edge state, boundary layer streaks.
@article{UZKU_2015_157_3_a12,
     author = {N. V. Nikitin and V. O. Pimanov},
     title = {Localized turbulent structures in a~circular pipe},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {111--116},
     year = {2015},
     volume = {157},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2015_157_3_a12/}
}
TY  - JOUR
AU  - N. V. Nikitin
AU  - V. O. Pimanov
TI  - Localized turbulent structures in a circular pipe
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2015
SP  - 111
EP  - 116
VL  - 157
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2015_157_3_a12/
LA  - ru
ID  - UZKU_2015_157_3_a12
ER  - 
%0 Journal Article
%A N. V. Nikitin
%A V. O. Pimanov
%T Localized turbulent structures in a circular pipe
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2015
%P 111-116
%V 157
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2015_157_3_a12/
%G ru
%F UZKU_2015_157_3_a12
N. V. Nikitin; V. O. Pimanov. Localized turbulent structures in a circular pipe. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 157 (2015) no. 3, pp. 111-116. http://geodesic.mathdoc.fr/item/UZKU_2015_157_3_a12/

[1] Avila K., Moxey D., de Lozar A., Avila M., Barkley D., Hof B., “The onset of turbulence in pipe flow”, Science, 333 (2011), 192–196 | DOI

[2] Priymak V. G., Miyazaki T., “Direct numerical simulation of equilibrium spatially localized structures in pipe flow”, Phys. Fluids, 16:12 (2004), 4221–4234 | DOI

[3] Shimizu M., Kida S., “A driving mechanism of a turbulent puff in pipe flow”, Fluid Dyn. Res., 41:4 (2009), Art. 045501, 27 pp. | DOI

[4] Skufca J. D., Yorke J. A., Eckhardt B., “Edge of chaos in a parallel shear flow”, Phys. Rev. Lett., 96:17 (2006), 174101-1–174101-4 | DOI

[5] Avila M., Mellibovsky F., Roland N., Hof B., “Streamwise-localized solutions at the onset of turbulence in pipe flow”, Phys. Rev. Lett., 110:22 (2013), 224502-1–224502-4 | DOI

[6] Nikitin N., “Finite-difference method for incompressible Navier–Stokes equations in arbitrary orthogonal curvilinear coordinates”, J. Comp. Phys., 217:2 (2006), 759–781 | DOI | MR | Zbl

[7] Wygnanski I. J., Champagne F. H., “On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug”, J. Fluid Mech., 59:2 (1973), 281–335 | DOI