On the Gakhov equation for the Biernacki operator
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 157 (2015) no. 2, pp. 79-92 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper establishes the region in the parameter plane such that the image of any starlike function with the zero root of the Gakhov equation under the mapping by the Biernacki operator corresponding to the parameter of this region is found in the Gakhov class consisting of the functions, for which this root is unique. It is demonstrated that the above region cannot be extended without loss of the uniqueness of the root for the image of at least one starlike function. For the image of the whole class of starlike functions having the zero root, the Gakhov width is calculated and the effective description is given for the set of trajectories of the exit out of the Gakhov class along the level lines.
Keywords: Biernacki operator, Gakhov equation, starlike functions, Gakhov class, Gakhov width.
@article{UZKU_2015_157_2_a6,
     author = {A. V. Kazantsev},
     title = {On the {Gakhov} equation for the {Biernacki} operator},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {79--92},
     year = {2015},
     volume = {157},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2015_157_2_a6/}
}
TY  - JOUR
AU  - A. V. Kazantsev
TI  - On the Gakhov equation for the Biernacki operator
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2015
SP  - 79
EP  - 92
VL  - 157
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2015_157_2_a6/
LA  - ru
ID  - UZKU_2015_157_2_a6
ER  - 
%0 Journal Article
%A A. V. Kazantsev
%T On the Gakhov equation for the Biernacki operator
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2015
%P 79-92
%V 157
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2015_157_2_a6/
%G ru
%F UZKU_2015_157_2_a6
A. V. Kazantsev. On the Gakhov equation for the Biernacki operator. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 157 (2015) no. 2, pp. 79-92. http://geodesic.mathdoc.fr/item/UZKU_2015_157_2_a6/

[1] Biernacki M., “Sur l'integrale des fonctions univalentes”, Bull. Acad. Pol. Sci., Ser. Sci. Math., Astron. et Phys., 8:1 (1960), 29–34 | MR | Zbl

[2] Pokhilevich V. A., “Ob odnoi teoreme M. Bernatskogo v teorii odnolistnykh funktsii”, Ukr. matem. zhurn., 17:4 (1965), 63–71 | MR | Zbl

[3] Kim Y. C., Sugawa T., “On power deformations of univalent functions”, Monatsh. Math., 167:2 (2012), 231–240 | DOI | MR | Zbl

[4] Kazantsev A. V., “O vykhode iz mnozhestva Gakhova, kontroliruemom usloviyami podchinennosti”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 156, no. 1, 2014, 31–43

[5] Kim Y. C., Ponnusamy S., Sugawa T., “Mapping properties of nonlinear integral operators and pre-Schwarzian derivatives”, J. Math. Anal. Appl., 299:2 (2004), 433–447 | DOI | MR | Zbl

[6] Alexander J. W., “Functions which map the interior of the unit circle upon simple regions”, Ann. of Math. (2), 17:1 (1915), 12–22 | DOI | MR | Zbl

[7] Hornich H., “Ein Banachraum analytischer Funktionen in Zusammenhang mit den schlichten Funktionen”, Monatsh. Math., 73 (1969), 36–45 | DOI | MR | Zbl

[8] Aksentev L. A., Nezhmetdinov I. R., “Dostatochnye usloviya odnolistnosti nekotorykh integralnykh predstavlenii”, Trudy seminara po kraevym zadacham, 18, Kazan. gos. un-t, Kazan, 1982, 3–11 | MR | Zbl

[9] Merkes E. P., “Univalence of an integral transform”, Contemp. Math., 38 (1985), 113–119 | DOI | MR | Zbl

[10] Ruscheweyh St., Wirths K.-J., “On extreme Bloch functions with prescribed critical points”, Math. Z., 180:1 (1982), 91–105 | DOI | MR | Zbl

[11] Aksentev L. A., “Svyaz vneshnei obratnoi kraevoi zadachi s vnutrennim radiusom oblasti”, Izv. vuzov. Matem., 1984, no. 2, 3–11 | MR | Zbl

[12] Kinder M. I., “Issledovanie uravneniya F. D. Gakhova v sluchae mnogosvyaznykh oblastei”, Trudy seminara po kraevym zadacham, 22, Kazan. gos. un-t, Kazan, 1985, 104–116 | MR | Zbl

[13] Royster W. C., “On the univalence of a certain integral”, Michigan Math. J., 12:4 (1965), 385–387 | DOI | MR | Zbl

[14] Kazantsev A. V., Chetyre etyuda na temu F. D. Gakhova, Ucheb. posobie, Mar. gos. un-t, Ioshkar-Ola, 2012, 64 pp.

[15] Kazantsev A. V., “Bifurkatsii i novye usloviya edinstvennosti kriticheskikh tochek giperbolicheskikh proizvodnykh”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 153, no. 1, 2011, 180–194 | MR | Zbl

[16] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1965, 716 pp. | MR

[17] Kazantsev A. V., Ekstremalnye svoistva vnutrennikh radiusov i ikh prilozheniya, Dis. $\dots$ kand. fiz.-matem. nauk, Kazan, 1990, 145 pp.

[18] Goluzin G. M., “Otsenka proizvodnoi dlya funktsii, regulyarnykh i ogranichennykh v kruge”, Matem. sb., 16(58):3 (1945), 295–306 | MR | Zbl

[19] Duren P. L., Univalent functions, Springer-Verlag, N.Y., 1983, xiv+383 pp. | MR | Zbl

[20] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966, 628 pp. | MR