Using domain decomposition method and non-matching grids for solving some variational inequalities
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 157 (2015) no. 2, pp. 68-78 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Finite difference approximations and iterative solution methods are constructed for a class of variational inequalities with constraints imposed on the solution and a priori known subdomain containing a free boundary. Domain decomposition method and non-matching grids are used for the approximation. Splitting and Uzawa-type iterative methods are investigated for solving the approximated problems. Numerical comparison of their efficiency is carried out.
Keywords: variational inequalities, finite difference approximation, non-matching grids, iterative methods.
Mots-clés : domain decomposition
@article{UZKU_2015_157_2_a5,
     author = {M. A. Ignatieva and A. V. Lapin},
     title = {Using domain decomposition method and non-matching grids for solving some variational inequalities},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {68--78},
     year = {2015},
     volume = {157},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2015_157_2_a5/}
}
TY  - JOUR
AU  - M. A. Ignatieva
AU  - A. V. Lapin
TI  - Using domain decomposition method and non-matching grids for solving some variational inequalities
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2015
SP  - 68
EP  - 78
VL  - 157
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2015_157_2_a5/
LA  - ru
ID  - UZKU_2015_157_2_a5
ER  - 
%0 Journal Article
%A M. A. Ignatieva
%A A. V. Lapin
%T Using domain decomposition method and non-matching grids for solving some variational inequalities
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2015
%P 68-78
%V 157
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2015_157_2_a5/
%G ru
%F UZKU_2015_157_2_a5
M. A. Ignatieva; A. V. Lapin. Using domain decomposition method and non-matching grids for solving some variational inequalities. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 157 (2015) no. 2, pp. 68-78. http://geodesic.mathdoc.fr/item/UZKU_2015_157_2_a5/

[1] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980, 384 pp. | MR

[2] Crank J., Free and moving boundary problems, Calderon Press, Oxford, 1987, 436 pp. | MR

[3] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980, 512 pp. | MR

[4] Ilin V. P., Metody konechnykh raznostei i konechnykh ob'emov dlya ellipticheskikh uravnenii, Izd-vo Instituta matematiki, Novosibirsk, 2000, 345 pp.

[5] Agoshkov V. I., “Metody razdeleniya oblasti v zadachakh matematicheskoi fiziki”, Vychisl. protsessy i sistemy, 8, Nauka, M., 1991, 4–51

[6] Le Tallec P., “Domain decomposition methods in computational mechanics”, Comput. Mech. Adv., 1:2 (1994), 121–220 | MR | Zbl

[7] Toselli A., Widlund O., Domain Decomposition Methods – Algorithms and Theory, Springer, Berlin–Heidelberg, 2005, 450 pp. | MR | Zbl

[8] Ignateva M. A., Lapin A. V., “Reshenie zadachi o prepyatstvii metodom dekompozitsii oblasti”, Uchen.zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 147, no. 3, 2005, 112–126 | Zbl

[9] Glovinski R., Lions Zh.-L., Tremoler R., Chislennoe issledovanie variatsionnykh neravenstv, Mir, M., 1979, 576 pp. | MR

[10] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979, 399 pp. | MR

[11] Lions P. L., Mercier B., “Splitting algorithms for the sum of two nonlinear operators”, SIAM J. Numer. Anal., 16:6 (1979), 964–979 | DOI | MR | Zbl

[12] Glowinski R., LeTallec P., Augmented Lagrangian and operator-splitting methods in nonlinear mechanics, SIAM, Philadelphia, PA, 1989, 302 pp. | MR | Zbl

[13] Lapin A. V., Iteratsionnye metody resheniya setochnykh variatsionnykh neravenstv, Izd-vo Kazan. un-ta, Kazan, 2008, 132 pp.

[14] Lapin A., “Preconditioned Uzawa-type methods for finite-dimensional constrained saddle point problems”, Lobachevskii J. Math., 31:4 (2010), 309–322 | DOI | MR | Zbl

[15] Laitinen E., Lapin A., Lapin S., “Iterative solution methods for variational inequalities with nonlinear main operator and constraints to gradient of solution”, Lobachevskii J. Math., 33:4 (2012), 364–371 | DOI | MR

[16] Laitinen E., Lapin A., “Iterative Solution Methods for the Large-Scale Constrained Saddle-Point Problems”, Numerical Methods for Differential Equations, Optimization, and Technological Problems, Comp. Meth. Appl. Sci., 27, 2013, 19–39 | DOI | MR | Zbl

[17] Bychenkov Yu., Chizhonkov E. V., Iteratsionnye metody resheniya sedlovykh zadach, Binom, M., 2010, 349 pp.