Approximation of the minimal eigenvalue for a nonlinear Sturm–Liouville problem
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 157 (2015) no. 2, pp. 40-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Properties of the minimal eigenvalue corresponding to the positive eigenfunction of a nonlinear eigenvalue problem for an ordinary differential equation are studied. This problem is approximated by a mesh scheme of the finite element method. The error of approximate solutions is investigated. Theoretical results are illustrated by numerical experiments for a model eigenvalue problem.
Keywords: eigenvalue, positive eigenfunction, nonlinear eigenvalue problem, ordinary differential equation, finite element method.
Mots-clés : Sturm–Liouville problem
@article{UZKU_2015_157_2_a3,
     author = {V. S. Zheltukhin and S. I. Solov'ev and P. S. Solov'ev},
     title = {Approximation of the minimal eigenvalue for a~nonlinear {Sturm{\textendash}Liouville} problem},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {40--54},
     year = {2015},
     volume = {157},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2015_157_2_a3/}
}
TY  - JOUR
AU  - V. S. Zheltukhin
AU  - S. I. Solov'ev
AU  - P. S. Solov'ev
TI  - Approximation of the minimal eigenvalue for a nonlinear Sturm–Liouville problem
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2015
SP  - 40
EP  - 54
VL  - 157
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2015_157_2_a3/
LA  - ru
ID  - UZKU_2015_157_2_a3
ER  - 
%0 Journal Article
%A V. S. Zheltukhin
%A S. I. Solov'ev
%A P. S. Solov'ev
%T Approximation of the minimal eigenvalue for a nonlinear Sturm–Liouville problem
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2015
%P 40-54
%V 157
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2015_157_2_a3/
%G ru
%F UZKU_2015_157_2_a3
V. S. Zheltukhin; S. I. Solov'ev; P. S. Solov'ev. Approximation of the minimal eigenvalue for a nonlinear Sturm–Liouville problem. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 157 (2015) no. 2, pp. 40-54. http://geodesic.mathdoc.fr/item/UZKU_2015_157_2_a3/

[1] Zheltukhin V. S., Solovëv S. I., Solovëv P. S., Chebakova V. Yu., “Vychislenie minimalnogo sobstvennogo znacheniya nelineinoi zadachi Shturma–Liuvillya”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 155, no. 3, 2013, 91–104

[2] Abdullin I. Sh., Zheltukhin V. S., Kashapov N. F., Vysokochastotnaya plazmenno-struinaya obrabotka materialov pri ponizhennykh davleniyakh. Teoriya i praktika primeneniya, Izd-vo Kazan. un-ta, Kazan, 2000, 348 pp.

[3] Zheltukhin V. S., “O razreshimosti odnoi nelineinoi spektralnoi zadachi teorii vysokochastotnykh razryadov ponizhennogo davleniya”, Izv. vuzov. Matem., 1999, no. 5, 26–31 | MR | Zbl

[4] Zheltukhin V. S., “Ob usloviyakh razreshimosti sistemy kraevykh zadach teorii vysokochastotnoi plazmy ponizhennogo davleniya”, Izv. vuzov. Matem., 2005, no. 1, 52–57 | MR | Zbl

[5] Zheltukhin V. S., Olkov E. V., “O razreshimosti odnoi nelineinoi zadachi Shturma–Liuvillya”, Issled. po prikl. matem. i informatike, 25, Izd-vo Kazan. un-ta, Kazan, 2004, 59–65

[6] Gulin A. V., Kregzhde A. V., Raznostnye skhemy dlya nekotorykh nelineinykh spektralnykh zadach, IPM AN SSSR, M., 1981, 28 pp.

[7] Kregzhde A. V., “O raznostnykh skhemakh dlya nelineinoi zadachi Shturma–Liuvillya”, Differents. uravneniya, 17:7 (1981), 1280–1284 | MR

[8] Solovëv S. I., “Approksimatsiya differentsialnykh zadach na sobstvennye znacheniya s nelineinoi zavisimostyu ot parametra”, Differents. uravneniya, 50:7 (2014), 955–962 | DOI | MR | Zbl

[9] Solovëv S. I., Nelineinye zadachi na sobstvennye znacheniya. Priblizhennye metody, LAP Lambert Acad. Publ., Saarbrücken, 2011, 256 pp.

[10] Goolin A. V., Kartyshov S. V., “Numerical study of stability and nonlinear eigenvalue problems”, Surv. Math. Ind., 3 (1993), 29–48 | MR | Zbl

[11] Apel Th., Sändig A.-M., Solov'ev S. I., “Computation of 3D vertex singularities for linear elasticity: Error estimates for a finite element method on graded meshes”, Math. Model. Numer. Anal., 36:6 (2002), 1043–1070 | DOI | MR | Zbl

[12] Lyashko A. D., Solov'yev S. I., “Fourier method of solution of FE systems with Hermite elements for Poisson equation”, Sov. J. Numer. Anal. Math. Model., 6:2 (1991), 121–129 | MR | Zbl

[13] Solov'ev S. I., “A fast direct method of solving Hermitian fourth-order finite-element schemes for the Poisson equation”, J. Math. Sci., 74:6 (1995), 1371–1376 | DOI | MR

[14] Solov'ev S. I., “Fast direct methods of solving finite-element grid schemes with bicubic elements for the Poisson equation”, J. Math. Sci., 71:6 (1994), 2799–2804 | DOI | MR | Zbl

[15] Zhigalko Yu. P., Lyashko A. D., Solovëv S. I., “Kolebaniya tsilindricheskoi obolochki s prisoedinënnymi zhëstkimi koltsevymi elementami”, Modelirovanie v mekhanike, 2:2 (1988), 68–85 | Zbl

[16] Zhigalko Yu. P., Solovëv S. I., “Sobstvennye kolebaniya balki s garmonicheskim ostsillyatorom”, Izv. vuzov. Matem., 2001, no. 10, 36–38 | MR | Zbl

[17] Karchevskii E. M., Solovëv S. I., “Issledovanie spektralnoi zadachi dlya operatora Gelmgoltsa na ploskosti”, Differents. uravneniya, 36:4 (2000), 563–565 | MR

[18] Karchevskii E. M., Solovëv S. I., “Suschestvovanie sobstvennykh znachenii spektralnoi zadachi teorii dielektricheskikh volnovodov”, Izv. vuzov. Matem., 2003, no. 3, 78–80 | MR | Zbl

[19] Gulin A. V., Kregzhde A. V., O primenimosti metoda bisektsii k resheniyu nelineinykh raznostnykh zadach na sobstvennye znacheniya, Preprint No 8, IPM AN SSSR, M., 1982, 22 pp.

[20] Gulin A. V., Yakovleva S. A., “O chislennom reshenii odnoi nelineinoi zadachi na sobstvennye znacheniya”, Vychislitelnye protsessy i sistemy, 6, Nauka, M., 1988, 90–97 | MR

[21] Dautov R. Z., Lyashko A. D., Solov'ev S. I., “The bisection method for symmetric eigenvalue problems with a parameter entering nonlinearly”, Russ. J. Numer. Anal. Math. Model., 9:5 (1994), 417–427 | DOI | MR | Zbl

[22] Solov'ëv S. I., “Preconditioned iterative methods for a class of nonlinear eigenvalue problems”, Linear Algebra Appl., 415:1 (2006), 210–229 | DOI | MR

[23] Vainikko G. M., Karma O. O., “O bystrote skhodimosti priblizhënnykh metodov v probleme sobstvennykh znachenii s nelineinym vkhozhdeniem parametra”, Zhurn. vychisl. matem. i matem. fiziki, 14:6 (1974), 1393–1408 | MR | Zbl

[24] Karma O. O., “Asimptoticheskie otsenki pogreshnosti priblizhënnykh kharakteristicheskikh znachenii golomorfnykh fredgolmovykh operator-funktsii”, Zhurn. vychisl. matem. i matem. fiziki, 11:3 (1971), 559–568 | MR | Zbl

[25] Karma O. O., “Ob approksimatsii operator-funktsii i skhodimosti priblizhënnykh sobstvennykh znachenii”, Trudy VTs Tart. gos. un-ta, 24, VTs TGU, Tartu, 1971, 3–143 | MR

[26] Karma O. O., “O skhodimosti diskretizatsionnykh metodov otyskaniya sobstvennykh znachenii integralnykh i differentsialnykh operatorov, golomorfno zavisyaschikh ot parametra”, Trudy VTs Tart. gos. un-ta, 24, VTs TGU, Tartu, 1971, 144–159 | MR

[27] Solovëv S. I., “Pogreshnost metoda Bubnova–Galërkina s vozmuscheniyami dlya simmetrichnykh spektralnykh zadach s nelineinym vkhozhdeniem parametra”, Zhurn. vychisl. matem. i matem. fiziki, 32:5 (1992), 675–691 | MR | Zbl

[28] Solovëv S. I., “Approksimatsiya simmetrichnykh spektralnykh zadach s nelineinym vkhozhdeniem parametra”, Izv. vuzov. Matem., 1993, no. 10, 60–68 | MR | Zbl

[29] Solovëv S. I., “Otsenki pogreshnosti metoda konechnykh elementov dlya simmetrichnykh spektralnykh zadach s nelineinym vkhozhdeniem parametra”, Izv. vuzov. Matem., 1994, no. 9, 70–77 | MR | Zbl

[30] Solovëv S. I., “Metod konechnykh elementov dlya simmetrichnykh zadach na sobstvennye znacheniya s nelineinym vkhozhdeniem spektralnogo parametra”, Zhurn. vychisl. matem. i matem. fiziki, 37:11 (1997), 1311–1318 | MR | Zbl

[31] Dautov R. Z., Lyashko A. D., Solovëv S. I., “Skhodimost metoda Bubnova–Galërkina s vozmuscheniyami dlya simmetrichnykh spektralnykh zadach s nelineinym vkhozhdeniem parametra”, Differents. uravneniya, 27:7 (1991), 1144–1153 | MR | Zbl

[32] Solovëv S. I., “Approksimatsiya nelineinykh spektralnykh zadach v gilbertovom prostranstve”, Differents. uravneniya, 51:7 (2015), 937–950 | DOI

[33] Vainikko G. M., “Asimptoticheskie otsenki pogreshnosti proektsionnykh metodov v probleme sobstvennykh znachenii”, Zhurn. vychisl. matem. i matem. fiziki, 4:3 (1964), 405–425 | MR | Zbl

[34] Vainikko G. M., “Otsenki pogreshnosti metoda Bubnova–Galërkina v probleme sobstvennykh znachenii”, Zhurn. vychisl. matem. i matem. fiziki, 5:4 (1965), 587–607 | MR | Zbl

[35] Vainikko G. M., “O bystrote skhodimosti priblizhënnykh metodov v probleme sobstvennykh znachenii”, Zhurn. vychisl. matem. i matem. fiziki, 7:5 (1967), 977–987 | MR | Zbl

[36] Solovëv S. I., “Metod konechnykh elementov dlya nesamosopryazhennykh spektralnykh zadach”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 148, no. 4, 2006, 51–62

[37] Solovëv S. I., “Superskhodimost konechno-elementnykh approksimatsii sobstvennykh funktsii”, Differents. uravneniya, 30:7 (1994), 1230–1238 | MR | Zbl

[38] Solovëv S. I., “Superskhodimost konechno-elementnykh approksimatsii sobstvennykh podprostranstv”, Differents. uravneniya, 38:5 (2002), 710–711 | MR | Zbl

[39] Solovëv S. I., “Approksimatsiya variatsionnykh zadach na sobstvennye znacheniya”, Differents. uravneniya, 46:7 (2010), 1022–1032 | MR | Zbl

[40] Solovëv S. I., “Approksimatsiya neotritsatelno-opredelennykh spektralnykh zadach”, Differents. uravneniya, 47:8 (2011), 1075–1082 | MR

[41] Solovëv S. I., “Approksimatsiya znakoneopredelennykh spektralnykh zadach”, Differents. uravneniya, 48:7 (2012), 1042–1055 | MR | Zbl

[42] Solovëv S. I., “Approksimatsiya differentsialnykh zadach na sobstvennye znacheniya”, Differents. uravneniya, 49:7 (2013), 936–944 | Zbl

[43] Solov'ëv S. I., “Finite element approximation with numerical integration for differential eigenvalue problems”, Appl. Numer. Math., 93 (2015), 206–214 | DOI | MR