The defining relations for nonlinear elastic bodies and their implementation in the calculation of the rotation shells subjected to axisymmetric loading based on the mixed FEM
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 157 (2015) no. 2, pp. 28-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The relations between stresses and strains, stress and strain increments of a deformable body with nonlinear elastic properties were obtained on the basis of the hypotheses about the proportionality of the components of stress and strain deviators, as well as the components of stress and strain increment deviators. The obtained relations were implemented in a mixed version of the finite element method to calculate the nonlinear elastic deformable rotation shells subjected to axisymmetric loading.
Keywords: vector approximation, tensor approximation, vector field, tensor field, mixed formulation, variational principle.
@article{UZKU_2015_157_2_a2,
     author = {N. A. Gureeva and Yu. V. Klotchkov and A. P. Nikolaev},
     title = {The defining relations for nonlinear elastic bodies and their implementation in the calculation of the rotation shells subjected to axisymmetric loading based on the mixed {FEM}},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {28--39},
     year = {2015},
     volume = {157},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2015_157_2_a2/}
}
TY  - JOUR
AU  - N. A. Gureeva
AU  - Yu. V. Klotchkov
AU  - A. P. Nikolaev
TI  - The defining relations for nonlinear elastic bodies and their implementation in the calculation of the rotation shells subjected to axisymmetric loading based on the mixed FEM
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2015
SP  - 28
EP  - 39
VL  - 157
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2015_157_2_a2/
LA  - ru
ID  - UZKU_2015_157_2_a2
ER  - 
%0 Journal Article
%A N. A. Gureeva
%A Yu. V. Klotchkov
%A A. P. Nikolaev
%T The defining relations for nonlinear elastic bodies and their implementation in the calculation of the rotation shells subjected to axisymmetric loading based on the mixed FEM
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2015
%P 28-39
%V 157
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2015_157_2_a2/
%G ru
%F UZKU_2015_157_2_a2
N. A. Gureeva; Yu. V. Klotchkov; A. P. Nikolaev. The defining relations for nonlinear elastic bodies and their implementation in the calculation of the rotation shells subjected to axisymmetric loading based on the mixed FEM. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 157 (2015) no. 2, pp. 28-39. http://geodesic.mathdoc.fr/item/UZKU_2015_157_2_a2/

[1] Novozhilov V. V., Chernykh K. F., Mikhailovskii E. I., Lineinaya teoriya tonkikh obolochek, Politekhnika, L., 1991, 656 pp. | MR

[2] Grigolyuk E. I., Shalashilin V. I., Problemy nelineinogo deformirovaniya. Metod prodolzheniya resheniya po parametru v nelineinykh zadachakh mekhaniki tverdogo deformiruemogo tela, Nauka, M., 1988, 232 pp. | MR

[3] Galimov K. Z., Paimushin V. N., Teoriya obolochek slozhnoi geometrii, Izd-vo Kazan. gos. un-ta, Kazan, 1985, 164 pp. | MR

[4] Grigolyuk E. I., Kabanov V. V., Ustoichivost obolochek, Nauka, M., 1978, 360 pp. | MR

[5] Yakupov N. M., Serazutdinov M. N., Nukh N. M., Raschet uprugikh tonkostennykh konstruktsii slozhnoi geometrii, IMM KNTs RAN, Kazan, 1993, 206 pp.

[6] Golovanov A. I., Tyuleneva O. N., Shigabutdinov A. F., Metod konechnykh elementov v statike i dinamike tonkostennykh konstruktsii, Fizmatlit, M., 2006, 392 pp.

[7] Skopinskii V. N., Napryazheniya v peresekayuschikhsya obolochkakh, Fizmatlit, M., 2008, 400 pp.

[8] Nikolaev A. P., Klochkov Yu. V., Kiselev A. P., Gureeva N. A., Vektornaya interpolyatsiya polei peremeschenii v konechno-elementnykh raschetakh obolochek, Volgogr. gos. agrar. un-t, Volgograd, 2012, 264 pp.

[9] Oden D., Konechnye elementy v nelineinoi mekhanike sploshnykh sred, Mir, M., 1976, 464 pp.

[10] Agapov V. P., Vasilev A. V., Sosnin A. V., “Razrabotka i realizatsiya vosmiuzlovogo konechnogo elementa dlya rascheta massivnykh konstruktsii s uchetom plasticheskikh deformatsii”, Stroitelnaya mekhanika i raschet sooruzhenii, 2013, no. 4, 71–73

[11] Bazhenov V. A., Krivenko O. P., Solovei M. O., Neliniine deformuvannya ta stiikist pruzhnikh obolonok neodnoridnoi strukturi, ZAT “Vipol”, Kiiv, 2010, 316 pp.

[12] Bate K.-Yu., Metody konechnykh elementov, Fizmatlit, M., 2010, 1022 pp.

[13] Gureeva N. A., “Ispolzovanie approksimatsii tenzornykh polei v MKE pri raschete osesimmetrichno nagruzhennykh obolochek vrascheniya”, Izv. vuzov. Stroitelstvo, 2009, no. 2, 17–23

[14] Gureeva N. A., Arkov D. P., “Realizatsiya deformatsionnoi teorii plastichnosti v raschetakh ploskonapryazhennykh plastin na osnove MKE v smeshannoi formulirovke”, Izv. vuzov. Sev.-Kavk. region. Ser. Estestv. nauki, 2011, no. 2, 12–15

[15] Sedov L. I., Mekhanika sploshnoi sredy, v. 1, 2, Nauka, M., 1976, 536 pp.

[16] Postnov V. A., Kharkhurim I. Ya., Metod konechnykh elementov v raschetakh sudovykh konstruktsii, Sudostroenie, L., 1974, 344 pp.