Mots-clés : concentration of electrons, concentration of ions
@article{UZKU_2015_157_2_a10,
author = {V. Yu. Chebakova},
title = {Numerical simulation of the high-frequency capacitive discharge},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {126--140},
year = {2015},
volume = {157},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2015_157_2_a10/}
}
TY - JOUR AU - V. Yu. Chebakova TI - Numerical simulation of the high-frequency capacitive discharge JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2015 SP - 126 EP - 140 VL - 157 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZKU_2015_157_2_a10/ LA - ru ID - UZKU_2015_157_2_a10 ER -
V. Yu. Chebakova. Numerical simulation of the high-frequency capacitive discharge. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 157 (2015) no. 2, pp. 126-140. http://geodesic.mathdoc.fr/item/UZKU_2015_157_2_a10/
[1] L. S. Polak (red.), Ocherki fiziki i khimii plazmy, Nauka, M., 1971, 433 pp.
[2] L. S. Polak, Yu. A. Lebedev (red.), Nizkotemperaturnaya plazma, v. 3, Khimiya plazmy, Nauka, Novosibirsk, 1991, 328 pp.
[3] Fridman A., Plasma chemistry, Cambridge Univ. Press, Cambridge, 2008, 978 pp.
[4] Oulet R., Barbe M., Cheremisinoff P. i dr., Tekhnologicheskoe primenenie nizkotemperaturnoi plazmy, Energoatomizdat, M., 1983, 144 pp.
[5] Mosse A. L., Burov I. O., Obrabotka dispersionnykh materialov v plazmennykh reaktorakh, Nauka i tekhnika, Minsk, 1980, 205 pp.
[6] Abdullin I. Sh., Zheltukhin V. S., Kashapov N. F., Vysokochastotnaya plazmenno-struinaya obrabotka materialov pri ponizhennykh davleniyakh. Teoriya i praktika primeneniya, Izd-vo Kazan. un-ta, Kazan, 2000, 348 pp.
[7] Amirov R. Kh., Isakaev E. Kh., Shavelkina M. B., Yusupov D. I., Shatalova T. B., Emirov R. M., “Plazmostruinyi sintez uglerodnykh nanostruktur i ustroistvo dlya ego realizatsii”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 156, no. 4, 2014, 112–119
[8] Raizer Yu. P., Shneider M. N., Yatsenko N. A., Vysokochastotnyi emkostnyi razryad: Fizika. Tekhnika eksperimenta. Prilozheniya, Izd-vo MFTI, M., 1995, 320 pp.
[9] Savinov V. P., Fizika vysokochastotnogo emkostnogo razryada, FIZMATLIT, M., 2013, 308 pp.
[10] Chebert P., Braithwaite N., Physics of radio-frequency plasmas, Cambridge Univ. Press, Cambridge, 2011, 394 pp.
[11] Golovitskii A. P., Tsendin L. D., “Prostye analiticheskie formuly dlya otsenki parametrov polozhitelnogo stolba tleyuschego razryada v elektrootritsatelnykh gazakh”, Zhurn. tekhn. fiziki, 84:3 (2014), 44–49
[12] Zheltukhin V. S., Solovev S. I., Solovev P. S., Chebakova V. Yu., “Vychislenie minimalnogo sobstvennogo znacheniya nelineinoi zadachi Shturma–Liuvillya”, Uchen.zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 155, no. 3, 2013, 91–104
[13] Dautov G., Dautov I., Fayrushin I., Kashapov N., “Calculation of distribution of potential near the surface of metal particle in the dust-electron thermal plasma”, J. Phys.: Conf. Ser., 567 (2014), Art. 012005, 5 pp. | DOI
[14] Abdullin I. Sh., Zheltukhin V. S., Chebakova V. Yu., “Vysokochastotnyi emkostnoi razryad: modelirovanie (obzor)”, Vestn. Kazan. tekhnol. un-ta, 17:23 (2014), 9–14
[15] Lebedev Yu. A., Tatarinov A. V., Titov A. Yu., Epshtein I. L., “Dvumernaya model neravnovesnogo silno neodnorodnogo SVCh-razryada vo vneshnem postoyannom pole”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 156, no. 4, 2014, 120–132
[16] Surzhikov S. T., “Chislennyi analiz struktury dvukh tipov tleyuschikh razryadov”, Fiziko-khimicheskaya kinetika v gazovoi dinamike, 7 (2008) http://chemphys.edu.ru/issues/2008-7/articles/464/
[17] Tikhonova N. V., Zheltukhin V. S., Chebakova V. Yu., Borodaev I. A., “Matematicheskaya model vysokochastotnoi plazmennoi obrabotki mnogosloinykh materialov zagotovki verkha obuvi”, Vestn. Kazan. tekhnol. un-ta, 15:17 (2012), 36–39
[18] Salabas A., Gousset G., Alves L. L., “Two-dimensional fluid modelling of charged particle transport in radio-frequency capacitively coupled discharges”, Plasma Sources Sci. Technol., 11:4 (2002), 448–465 | DOI
[19] Gorbachev Yu. E., Zatevakhin M. A., Kagonovich I. D., “Modelirovanie rosta plenok gidrirovannogo amorfnogo kremniya iz VCh-razryadnoi plazmy”, Zhurn. tekhn. fiziki, 66:12 (1996), 89–110
[20] Mokrov M. S., Raizer Yu. P., “Primenenie metoda Monte-Karlo dlya nakhozhdeniya koeffitsientov ionizatsii i vtorichnoi emissii i volt-ampernoi kharakteristiki taunsendovskogo razryada v vodorode”, Zhurn. tekhn. fiziki, 78:4 (2008), 47–54
[21] Memnonov V. P., Ulyanov P. G., “Eksperimentalnaya otsenka parametrov raspredelenii dlya sherokhovatosti poverkhnosti v kanalakh nanorazmerov”, Zhurn. tekhn. fiziki, 81:2 (2011), 104–109
[22] Yonemura Sh., Nanbu K., Iwata N., “Synthesis of sheath voltage drops in asymmetric radio-frequency discharges”, J. Appl. Phys., 96:1 (2004), 127–132 | DOI
[23] Wang S., Xu X., Song Y. H., Wang Y. N., “Frequency matching effects on characteristics of bulk plasmas and sheaths for dual-frequency capacitively coupled argon discharges: One-dimensional fluid simulation”, Plasma Sci. Technol., 10:1 (2008), 57–60 | DOI
[24] Abdullin I. Sh., Zheltukhin V. S., Chebakova V. Yu., Shneider M. N., “Modelirovanie vysokochastotnogo emkostnogo razryada pri bolshikh mezhelektrodnykh rasstoyaniyakh. I. Postanovka zadachi”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 155, no. 2, 2013, 123–130
[25] Kudryavtsev A. A., Smirnov A. S., Tsendin L. D., Fizika tleyuschego razryada, Lan, SPb., 2010, 512 pp.
[26] Raizer Yu. P., Fizika gazovogo razryada, Izd. dom “Intellekt”, Dolgoprudnyi, 2009, 736 pp.
[27] Epstein I. L., Gavrilović M., Jovircević S., Konjević N., Lebedev Yu. A., Tatarinov A. V., “The study of a homogeneous column of argon plasma at a pressure of 0.5 torr, generated by means of the Beenakker's cavity”, Eur. Phys. J. D, 68 (2014), Art. 334 | DOI
[28] Baisova B. T., Strunin V. I., Strunina N. N., Khudaibergenov G. Zh., “Absolyutnye zaselennosti metastabilnykh sostoyanii argona v plazme vysokochastotnogo razryada”, Zhurn. tekhn. fiziki, 73:8 (2003), 30–33
[29] Dyatko N. A., Ionikh Yu. Z., Meschanov A. V., Napartovich A. P., “Issledovanie temnoi fazy na stadii razvitiya polozhitelnogo stolba tleyuschego razryada v argone”, Fizika plazmy, 31:10 (2005), 939–953
[30] Ferreira C. M., Loureiro J., Ricard A., “Populations in the metastable and the resonance levels of argon and stepwise ionization effects in a low pressure argon positive column”, J. Appl. Physics, 57:1 (1985), 82–90 | DOI
[31] Samarskii A. A., Gulin A. V., Chislennye metody, Nauka, M., 1989, 432 pp. | MR
[32] Samarskii A. A., Vabischevich P. N., Chislennye metody resheniya zadach konvektsii-diffzuzii, Editorial URSS, M., 1999, 248 pp.
[33] Fedorenko R. P., Vvedenie v vychislitelnuyu fiziku, Izd-vo MFTI, M., 1994, 528 pp.
[34] Hagelaar G. J. M., Pitchford L. C., “Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models”, Plasma Sources Sci. Techn., 14:4 (2005), 722–733 | DOI
[35] Lymberopoulos D. P., Economou D. J., “Fluid simulations of glow discharge: Effect of metastable atoms in argon”, J. Appl. Phys., 73:8 (1993), 3668–3679 | DOI
[36] Zhu X.-M., Pu Y.-K., “A simple collisional-radiative model for low-temperature argon discharges with pressure ranging from 1 Pa to atmospheric pressure: kinetics of Paschen 1s and 2p levels”, J. Phys. D: Appl. Phys., 43:1 (2010), Art. 015204, 17 pp. | DOI
[37] Castanos Martinez E., Kabouzi Y., Makasheva K., Moisan M., “Modeling of microwave-sustained plasmas at atmospheric pressure with application to discharge contraction”, Phys. Rev. E, 70:6, Pt. 2 (2004), Art. 066405 | DOI
[38] Smirnov B. M., Vozbuzhdennye atomy, Energoizdat, M., 1982, 232 pp.
[39] Fastovskii V. G., Rovinskii A. E., Petrovskii Yu. V, Inertnye gazy, Atomizdat, M., 1972, 352 pp.
[40] Mak-Daniel I., Protsessy stolknovenii v ionizirovannykh gazakh, Mir, M., 1967, 832 pp.
[41] Smirnov B. M., “Diffuziya i podvizhnost ionov v gaze”, Usp. fiz. nauk, 92:1 (1967), 75–103
[42] Karoulina E., Lebedev Yu., “Computer simulation of microwave and DC plasmas comparative characterization of plasmas”, J. Phys. D: Appl. Phys., 25:3 (1992), 401–412 | DOI