Mots-clés : Tschirnhausen transformation.
@article{UZKU_2015_157_2_a1,
author = {I. G. Galyautdinov and E. E. Lavrentyeva},
title = {Determination of the minimal polynomials of algebraic numbers of the form $\operatorname{tg}^2(\pi/n)$ by the {Tschirnhausen} transformation},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {20--27},
year = {2015},
volume = {157},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2015_157_2_a1/}
}
TY - JOUR
AU - I. G. Galyautdinov
AU - E. E. Lavrentyeva
TI - Determination of the minimal polynomials of algebraic numbers of the form $\operatorname{tg}^2(\pi/n)$ by the Tschirnhausen transformation
JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY - 2015
SP - 20
EP - 27
VL - 157
IS - 2
UR - http://geodesic.mathdoc.fr/item/UZKU_2015_157_2_a1/
LA - ru
ID - UZKU_2015_157_2_a1
ER -
%0 Journal Article
%A I. G. Galyautdinov
%A E. E. Lavrentyeva
%T Determination of the minimal polynomials of algebraic numbers of the form $\operatorname{tg}^2(\pi/n)$ by the Tschirnhausen transformation
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2015
%P 20-27
%V 157
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2015_157_2_a1/
%G ru
%F UZKU_2015_157_2_a1
I. G. Galyautdinov; E. E. Lavrentyeva. Determination of the minimal polynomials of algebraic numbers of the form $\operatorname{tg}^2(\pi/n)$ by the Tschirnhausen transformation. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 157 (2015) no. 2, pp. 20-27. http://geodesic.mathdoc.fr/item/UZKU_2015_157_2_a1/
[1] Burbaki N., Algebra. Mnogochleny i polya. Uporyadochennye gruppy, Nauka, M., 1965, 300 pp. | MR
[2] Chebotarev N. G., Osnovy teorii Galua, ONTI GTTI, M.–L., 1934, 222 pp.
[3] Sushkevich A. K., Osnovy vysshei algebry, OGIZ, M.–L., 1941, 460 pp.
[4] Galieva L. I., Galyautdinov I. G., “Ob odnom klasse uravnenii, razreshimykh v radikalakh”, Izv. vuzov. Matem., 2011, no. 2, 22–30 | MR | Zbl
[5] Shafarevich I. O., “Novoe dokazatelstvo teoremy Kronekera–Vebera”, Trudy Matem. In-ta AN SSSR, 38, 1951, 382–387 | MR | Zbl
[6] Kostrikin A. I., Vvedenie v algebru, Ch. 3, Fizmatlit, M., 2001, 272 pp.
[7] Prasolov V. V., Mnogochleny, MTsIMO, M., 2003, 335 pp.
[8] Arnold V. I., “O klassakh kogomologii algebraicheskoi funktsii, invariantnykh otnositelno preobrazovaniya Chirngauzena”, Funktsionalnyi analiz i ego prilozheniya, 4:1 (1970), 84–85 | MR | Zbl
[9] Kolmogorov A. I., Izbrannye trudy. Matematika i mekhanika, Nauka, M., 1985, 470 pp. | MR
[10] Burbaki N., Ocherki po istorii matematiki, Izd-vo inostr. lit., M., 1963, 292 pp.