Determination of the minimal polynomials of algebraic numbers of the form $\operatorname{tg}^2(\pi/n)$ by the Tschirnhausen transformation
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 157 (2015) no. 2, pp. 20-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Solutions of two problems are offered based on the Tschirnhausen transformation. The first problem is connected with the construction of minimal polynomials of the numbers of the form $\operatorname{tg}^2(\pi/n)$ by means of the Tschirnhausen transformation for all natural $n>2$. The second problem consists in finding the exact values of the roots of the equation $x^3-7x-7=0$. The solution of the problem is obtained by considering the fact that the roots of the equation produce the circular field $\mathbb Q_7$. The examples of the construction of minimal polynomials are provided.
Keywords: algebraic numbers, minimal polynomials, circular fields and subfields
Mots-clés : Tschirnhausen transformation.
@article{UZKU_2015_157_2_a1,
     author = {I. G. Galyautdinov and E. E. Lavrentyeva},
     title = {Determination of the minimal polynomials of algebraic numbers of the form $\operatorname{tg}^2(\pi/n)$ by the {Tschirnhausen} transformation},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {20--27},
     year = {2015},
     volume = {157},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2015_157_2_a1/}
}
TY  - JOUR
AU  - I. G. Galyautdinov
AU  - E. E. Lavrentyeva
TI  - Determination of the minimal polynomials of algebraic numbers of the form $\operatorname{tg}^2(\pi/n)$ by the Tschirnhausen transformation
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2015
SP  - 20
EP  - 27
VL  - 157
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2015_157_2_a1/
LA  - ru
ID  - UZKU_2015_157_2_a1
ER  - 
%0 Journal Article
%A I. G. Galyautdinov
%A E. E. Lavrentyeva
%T Determination of the minimal polynomials of algebraic numbers of the form $\operatorname{tg}^2(\pi/n)$ by the Tschirnhausen transformation
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2015
%P 20-27
%V 157
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2015_157_2_a1/
%G ru
%F UZKU_2015_157_2_a1
I. G. Galyautdinov; E. E. Lavrentyeva. Determination of the minimal polynomials of algebraic numbers of the form $\operatorname{tg}^2(\pi/n)$ by the Tschirnhausen transformation. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 157 (2015) no. 2, pp. 20-27. http://geodesic.mathdoc.fr/item/UZKU_2015_157_2_a1/

[1] Burbaki N., Algebra. Mnogochleny i polya. Uporyadochennye gruppy, Nauka, M., 1965, 300 pp. | MR

[2] Chebotarev N. G., Osnovy teorii Galua, ONTI GTTI, M.–L., 1934, 222 pp.

[3] Sushkevich A. K., Osnovy vysshei algebry, OGIZ, M.–L., 1941, 460 pp.

[4] Galieva L. I., Galyautdinov I. G., “Ob odnom klasse uravnenii, razreshimykh v radikalakh”, Izv. vuzov. Matem., 2011, no. 2, 22–30 | MR | Zbl

[5] Shafarevich I. O., “Novoe dokazatelstvo teoremy Kronekera–Vebera”, Trudy Matem. In-ta AN SSSR, 38, 1951, 382–387 | MR | Zbl

[6] Kostrikin A. I., Vvedenie v algebru, Ch. 3, Fizmatlit, M., 2001, 272 pp.

[7] Prasolov V. V., Mnogochleny, MTsIMO, M., 2003, 335 pp.

[8] Arnold V. I., “O klassakh kogomologii algebraicheskoi funktsii, invariantnykh otnositelno preobrazovaniya Chirngauzena”, Funktsionalnyi analiz i ego prilozheniya, 4:1 (1970), 84–85 | MR | Zbl

[9] Kolmogorov A. I., Izbrannye trudy. Matematika i mekhanika, Nauka, M., 1985, 470 pp. | MR

[10] Burbaki N., Ocherki po istorii matematiki, Izd-vo inostr. lit., M., 1963, 292 pp.