Shock waves in liquid under the pulsed action of a cavitation bubble on a rigid wall
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 157 (2015) no. 2, pp. 5-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Shock waves arising in water during the collapse of a cavitation bubble near a plane rigid wall are studied in the case with a liquid layer (interlayer) between the bubble and the wall. The shock waves determine to a large extent the pulsed action of the bubble on the wall, which is known as one of the main cavitation erosion mechanisms of body surfaces. The collapse of an initially slightly oblate spheroidal bubble is considered when a thin high-speed jet directed to the wall is formed. The main attention is drawn to the initial stage of the jet impact when the wall is subjected to the pressure comparable to the water hammer pressure. A two-step numerical technique, in which the stage of jet formation is evaluated by the boundary element method, is used. The stage of pulsed action produced by the jet is calculated by direct numerical simulation based on the equations of gas dynamics. The study is performed for interlayers, the thickness of which is 100 and more times less than the initial radius of the bubble. It has been found that if the interlayer thickness is by a factor of $3\cdot10^{-4}$ and more less than the initial radius of the bubble, the maximum pressure on the wall remains higher than the water hammer pressure, as is in the case without the interlayer. For thicker interlayers, the load on the wall does not exceed, in general, the water hammer pressure.
Mots-clés : cavitation erosion, cumulative jet
Keywords: bubble collapse near wall, shock impact.
@article{UZKU_2015_157_2_a0,
     author = {A. A. Aganin and T. S. Guseva and L. A. Kosolapova and V. G. Malakhov},
     title = {Shock waves in liquid under the pulsed action of a~cavitation bubble on a~rigid wall},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {5--19},
     year = {2015},
     volume = {157},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2015_157_2_a0/}
}
TY  - JOUR
AU  - A. A. Aganin
AU  - T. S. Guseva
AU  - L. A. Kosolapova
AU  - V. G. Malakhov
TI  - Shock waves in liquid under the pulsed action of a cavitation bubble on a rigid wall
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2015
SP  - 5
EP  - 19
VL  - 157
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2015_157_2_a0/
LA  - ru
ID  - UZKU_2015_157_2_a0
ER  - 
%0 Journal Article
%A A. A. Aganin
%A T. S. Guseva
%A L. A. Kosolapova
%A V. G. Malakhov
%T Shock waves in liquid under the pulsed action of a cavitation bubble on a rigid wall
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2015
%P 5-19
%V 157
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2015_157_2_a0/
%G ru
%F UZKU_2015_157_2_a0
A. A. Aganin; T. S. Guseva; L. A. Kosolapova; V. G. Malakhov. Shock waves in liquid under the pulsed action of a cavitation bubble on a rigid wall. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 157 (2015) no. 2, pp. 5-19. http://geodesic.mathdoc.fr/item/UZKU_2015_157_2_a0/

[1] Brennen C. E., Hydrodynamics of pumps, Oxford Univ. Press, N.Y., 1994, 293 pp.

[2] Field J. E., Camus J.-J., Tinguely M., Obreschkow D., Farhat M., “Cavitation in impacted drops and jets and the effect on erosion damage thresholds”, Wear, 290–291 (2012), 154–160 | DOI

[3] Aganin A. A., Ilgamov M. A., Malakhov V. G., Khalitova T. F., Khismatullina N. A., “Udarnoe vozdeistvie kavitatsionnogo puzyrka na uprugoe telo”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 153, no. 1, 2011, 131–146 | MR

[4] Turangan C. K., Jamaluddin A. R., Ball G. J., Leighton T. G., “Free-Lagrange simulations of the expansion and jetting collapse of air bubbles in water”, J. Fluid Mech., 598 (2008), 1–25 | DOI | Zbl

[5] Lauterborn W., Kurz T., “Physics of bubble oscillations”, Rep. Prog. Phys., 73 (2010), 106501–106587 | DOI

[6] Tomita Y., Shima A., “Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse”, J. Fluid Mech., 169 (1986), 535–564 | DOI

[7] Voinov O. V., Voinov V. V., “Chislennyi metod rascheta nestatsionarnykh dvizhenii idealnoi neszhimaemoi zhidkosti so svobodnymi poverkhnostyami”, Dokl. AN SSSR, 221:3 (1975), 559–562 | Zbl

[8] Aganin A. A., Ilgamov M. A., Kosolapova L. A., Malakhov V. G., “Skhlopyvanie kavitatsionnogo puzyrka v zhidkosti vblizi tverdoi stenki”, Vestn. Bashkir. un-ta, 18:1 (2013), 15–21

[9] Blake J. R., Taib B. B., Doherty G., “Transient cavities near boundaries”, J. Fluid Mech., 170 (1986), 479–497 | DOI | Zbl

[10] Pearson A., Blake J. R., Otto S. R., “Jets in bubbles”, J. Engineering Mathematics, 48 (2004), 391–412 | DOI | MR | Zbl

[11] Yabe T., Xiao F., Utsumi T., “The constrained interpolation profile method for multiphase analysis”, J. Comput. Phys., 169:2 (2001), 556–593 | DOI | MR | Zbl

[12] Takizawa K., Yabe T., Tsugawa Y., Tezduyar T. E., Mizoe H., “Computation of free-surface flows and fluid-object interactions with the CIP method based on adaptive meshless Soroban grids”, Comput. Mech., 40:1 (2007), 167–183 | DOI | Zbl

[13] Aganin A. A., Guseva T. S., “Chislennoe modelirovanie kontaktnogo vzaimodeistviya szhimaemykh sred na eilerovykh setkakh”, Uchen. zap. Kazan. un-ta. Ser. fiz.-matem. nauki, 154, no. 4, 2012, 74–99

[14] Aganin A. A., Guseva T. S., “Chislennoe modelirovanie dinamiki neodnorodnykh szhimaemykh sred na osnove metoda CIP-CUP na adaptivnykh soroban-setkakh”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 156, no. 2, 2014, 55–72

[15] Heymann F. J., “High-speed impact between a liquid drop and a solid surface”, J. Appl. Phys., 40:13 (1969), 5113–5122 | DOI

[16] Lesser M. B., “Analytic solutions of liquid-drop impact problems”, Proc. R. Soc. Lond. A, 377 (1981), 289–308 | DOI | MR

[17] Chizhov A. V., Shmidt A. A., “Vysokoskorostnoi udar kapli o pregradu”, Zhurn. tekhn. fiziki, 170:12 (2000), 18–27

[18] Haller K. K., Ventikos Y., Poulikakos D., Monkewitz P., “Computational study of high-speed liquid droplet impact”, J. Appl. Phys., 92:5 (2002), 2821–2828 | DOI

[19] Aganin A. A., Ilgamov M. A., Khalitova T. F., “Udarnoe vozdeistvie strui na zhestkuyu stenku”, Aktualnye problemy mekhaniki sploshnoi sredy, K 20-letiyu IMM KazNTs RAN, v. 1, Foliant, Kazan, 2011, 134–145

[20] Podlubnyi V. V., Fonarev A. S., “Otrazhenie sfericheskoi vzryvnoi volny ot ploskoi poverkhnosti”, Izv. RAN. MZhG, 1974, no. 6, 66–72