Investigation of a two-grid method of improved accuracy for the elliptic reaction–diffusion equation with boundary layers
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 157 (2015) no. 1, pp. 60-74 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A two-grid method for the elliptic equation with a small parameter $\varepsilon$ multiplying the highest derivative is investigated. The $\varepsilon$-uniformly convergent difference scheme on the Shishkin mesh is considered. To resolve the difference scheme, a two-grid method with $\varepsilon$-uniform interpolation formula is used. To increase the accuracy of the scheme, the Richardson extrapolation in the two-grid method is applied. The results of numerical experiments are discussed. Various iterative methods for implementation of the two-grid algorithm are suggested.
Mots-clés : elliptic reaction–diffusion equation, singular perturbation, uniform convergence.
Keywords: Shishkin mesh, two-grid method, Richardson extrapolation
@article{UZKU_2015_157_1_a6,
     author = {S. V. Tikhovskaya},
     title = {Investigation of a~two-grid method of improved accuracy for the elliptic reaction{\textendash}diffusion equation with boundary layers},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {60--74},
     year = {2015},
     volume = {157},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2015_157_1_a6/}
}
TY  - JOUR
AU  - S. V. Tikhovskaya
TI  - Investigation of a two-grid method of improved accuracy for the elliptic reaction–diffusion equation with boundary layers
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2015
SP  - 60
EP  - 74
VL  - 157
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2015_157_1_a6/
LA  - ru
ID  - UZKU_2015_157_1_a6
ER  - 
%0 Journal Article
%A S. V. Tikhovskaya
%T Investigation of a two-grid method of improved accuracy for the elliptic reaction–diffusion equation with boundary layers
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2015
%P 60-74
%V 157
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2015_157_1_a6/
%G ru
%F UZKU_2015_157_1_a6
S. V. Tikhovskaya. Investigation of a two-grid method of improved accuracy for the elliptic reaction–diffusion equation with boundary layers. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 157 (2015) no. 1, pp. 60-74. http://geodesic.mathdoc.fr/item/UZKU_2015_157_1_a6/

[1] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted Numerical Methods for Singular Perturbation Problems, World Scientific, Singapure, 1996, 163 pp. | MR | Zbl

[2] Clavero C., Gracia J. L., O'Riordan E., “A parameter robust numerical method for a two dimensional reaction-diffusion problem”, Math. Comput., 74:252 (2005), 1743–1758 | DOI | MR | Zbl

[3] Roos H. G., Stynes M., Tobiska L., Robust Numerical Methods for Singularly Perturbed Differential Equations, Springer-Verlag, Berlin, 2008, 604 pp. | MR | Zbl

[4] Shishkin G. I., Shishkina L. P., Difference Methods for Singular Perturbation Problems, Chapman Hall/CRC, Boca Raton, 2009, 408 pp. | MR | Zbl

[5] Angelova I. T., Vulkov L. G., “A two-grid method on layer-adapted meshes for a semilinear 2-D reaction-diffusion problem”, Lecture Notes in Computer Science, 5910, 2010, 703–710 | DOI | Zbl

[6] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992, 232 pp.

[7] Andreev V. B., “O tochnosti setochnykh approksimatsii negladkikh reshenii singulyarno vozmuschennogo uravneniya reaktsii-diffuzii v kvadrate”, Differents. uravneniya, 42:7 (2006), 954–966 | MR | Zbl

[8] Han H., Kellogg R. B., “Differentiability properties of solutions of the equation $-\varepsilon^2\Delta u+ru=f(x,y)$ in a square”, SIAM J. Math. Anal., 21:2 (1990), 394–408 | DOI | MR | Zbl

[9] Bakhvalov N. S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zhurn. vychisl. matem. i matem. fiziki, 9:4 (1969), 841–859 | DOI | Zbl

[10] Ershova T. Ya., “O reshenii zadachi Dirikhle dlya singulyarno vozmuschennogo uravneniya reaktsii-diffuzii v kvadrate na setke Bakhvalova”, Vestn. Mosk. un-ta. Ser. 15. Vychisl. matem. i kibernetika, 2009, no. 4, 7–14 | DOI | MR | Zbl

[11] Axelsson O., Layton W., “A two-level discretization of nonlinear boundary value problems”, SIAM J. Numer. Anal., 33 (1996.), 2359–2374 | DOI | MR | Zbl

[12] Xu J., “A novel two-grid method for semilinear elliptic equation”, SIAM J. Sci. Comput., 15 (1994), 231–237 | DOI | MR | Zbl

[13] Vulkov L. G., Zadorin A. I., “Two-Grid Algorithms for the Solution of 2D Semilinear Singularly perturbed convection-diffusion equations using an exponential finite difference scheme”, AIP Conf. Proc., 1186, 2009, 371–379 | DOI | MR

[14] Zadorin A. I., Tikhovskaya S. V., Zadorin N. A., “A two-grid method for elliptic problem with boundary layers”, Appl. Numer. Math., 93 (2015), 270–278 | DOI | MR | Zbl

[15] Tikhovskaya S. V., “Dvukhsetochnyi metod dlya ellipticheskogo uravneniya s pogranichnymi sloyami na setke Shishkina”, Uchen. zap. Kazan. un-ta. Seriya Fiz.-matem. nauki, 154, no. 4, 2012, 49–56

[16] Zadorin A. I., Zadorin N. A., “Interpolation formula for functions with a boundary layer component and its application to derivatives calculation”, Sib. elektr. matem. izv., 9 (2012), 445–455 | MR

[17] Shishkin G. I., Shishkina L. P., “Metod Richardsona vysokogo poryadka tochnosti dlya kvazilineinogo singulyarno vozmuschennogo ellipticheskogo uravneniya reaktsii-diffuzii”, Differents. uravneniya, 41:7 (2005), 980–989 | MR | Zbl

[18] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984, 320 pp. | MR

[19] Ilin V. P., Metody konechnykh raznostei i konechnykh ob'emov dlya ellipticheskikh uravnenii, Izd-vo IVMiMG SO RAN, Novosibirsk, 2001, 318 pp.

[20] Shishkin G. I., Shishkina L. P., “Uluchshennaya raznostnaya skhema metoda dekompozitsii resheniya dlya singulyarno vozmuschennogo uravneniya reaktsii-diffuzii”, Trudy IMM UrO RAN, 16, no. 1, 2010, 255–271

[21] Zadorin A. I., Zadorin N. A., “Interpolyatsiya funktsii s pogransloinymi sostavlyayuschimi i ee primenenie v dvukhsetochnom metode”, Sib. elektr. matem. izv., 8 (2011), 247–267 | MR

[22] Ilin V. P., Metody i tekhnologii konechnykh elementov, Izd-vo IVMiMG SO RAN, Novosibirsk, 2007, 371 pp.

[23] Saad Y., Iterative Methods for Sparse Linear Systems, PWS Publ. Co, N.Y., 1996, 448 pp. | Zbl

[24] Ilin V. P., “Metody bisopryazhennykh napravlenii v podprostranstvakh Krylova”, Sib. zhurn. industr. matem., 11:4(36) (2008), 47–60 | DOI | MR | Zbl

[25] Tikhovskaya S. V., Razrabotka raznostnykh skhem na sguschayuschikhsya setkakh dlya kraevykh zadach s pogranichnym sloem, Dis. $\dots$ kand. fiz.-matem. nauk, Omsk, 2013, 105 pp.