@article{UZKU_2015_157_1_a5,
author = {A. Yu. Kuznetsova and E. V. Patrin},
title = {On the ideals of $C^*$-algebra generated by a~family of partial isometries and multipliers},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {51--59},
year = {2015},
volume = {157},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2015_157_1_a5/}
}
TY - JOUR AU - A. Yu. Kuznetsova AU - E. V. Patrin TI - On the ideals of $C^*$-algebra generated by a family of partial isometries and multipliers JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2015 SP - 51 EP - 59 VL - 157 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZKU_2015_157_1_a5/ LA - ru ID - UZKU_2015_157_1_a5 ER -
%0 Journal Article %A A. Yu. Kuznetsova %A E. V. Patrin %T On the ideals of $C^*$-algebra generated by a family of partial isometries and multipliers %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2015 %P 51-59 %V 157 %N 1 %U http://geodesic.mathdoc.fr/item/UZKU_2015_157_1_a5/ %G ru %F UZKU_2015_157_1_a5
A. Yu. Kuznetsova; E. V. Patrin. On the ideals of $C^*$-algebra generated by a family of partial isometries and multipliers. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 157 (2015) no. 1, pp. 51-59. http://geodesic.mathdoc.fr/item/UZKU_2015_157_1_a5/
[1] Cuntz J., “Simple $C^*$-algebras generated by isometries”, Commun. Math. Phys., 57:2 (1977), 173–185 | DOI | MR | Zbl
[2] Cuntz J., Krieger W., “A class of $C^*$-algebras and topological Markov chains”, Invent. Math., 56:3 (1980), 251–268 | DOI | MR | Zbl
[3] Pimsner M. V., “A class of $C^*$-algebras generalizing both Cuntz–Krieger algebras and crossed products by $\mathbb Z$”, Free Probability Theory, Fields Inst. Commun., 12, Am. Math. Soc., Providence, RI, 1997, 189–212 | MR | Zbl
[4] Matsumoto K., “On $C^*$-algebras associated with subshifts”, Int. J. Math., 8:3 (1997), 357–374 | DOI | MR | Zbl
[5] Matsumoto K., “Relation among generators of $C^*$-algebras associated with subshifts”, Int. J. Math., 10:3 (1999), 385–405 | DOI | MR | Zbl
[6] Exel R., Vershik A., $C^*$-algebras of irreversible dynamical systems, 2002, 19 pp., arXiv: math/0203185v1[math.OA] | MR
[7] Arzumanyan V. A., “Operatornye algebry, assotsiirovannye s nesingulyarnymi endomorfizmami prostranstva Lebega”, Izv. AN ArmSSR, 21:6 (1986), 596–616 | MR | Zbl
[8] Grigoryan S., Kuznetsova A., “$C^*$-algebras generated by mappings”, Lobachevskii J. Math., 29:1 (2008), 5–8 | DOI | MR | Zbl
[9] Grigoryan S. A., Kuznetsova A. Yu., “$C^*$-algebry, porozhdennye otobrazheniyami”, Matem. zametki, 87:5 (2010), 694–703 | DOI | MR | Zbl
[10] Grigoryan S., Kuznetsova A., “On a category of nuclear $C^*$-algebras”, An Operator Theory Summer, Proc. 23rd Int. Conf. on Operator Theory, Theta Foundation, Bucharest, 2012, 39–50 | MR
[11] Kuznetsova A. Yu., “Ob odnom klase $C^*$-algebr, porozhdennykh schetnym semeistvom chastichnykh izometrii”, Izv. NAN Armenii. Matem., 45:16 (2010), 51–62 | MR | Zbl
[12] Kuznetsova A. Yu., Patrin E. V., “Ob odnom klasse $C^*$-algebr, porozhdennykh chastichnymi izometriyami i multiplikatorami”, Izv. vuzov. Matem., 2012, no. 6, 44–55 | MR | Zbl
[13] Johnson B. E., Parrot K. S., “Operators commuting with a von Neumann algebra modulo the set of compact operators”, J. Funct. Anal., 11:1 (1972), 39–61 | DOI | MR | Zbl
[14] Shelan S., Steprans J., “Masas in the Calkin algebra without the continuum hypothesis”, J. Appl. Anal., 17:1 (2011), 69–89 | MR